
Adopting Kotlin
Multiplatform in
the Future Lab

Aachen App

Bachelor’s Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

by
Lennart Fischer

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Ulrik Schroeder

Registration date: 19.08.2024
Submission date: 19.12.2024

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Declaration of Academic Integrity

___________________________ _____________________________
Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)

 Student ID Number (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel
I hereby declare under penalty of perjury that I have completed the present paper/bachelor's thesis/master's thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting) erbracht habe.
Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt; dies umfasst
insbesondere auch Software und Dienste zur Sprach-, Text- und Medienproduktion. Ich erkläre, dass
für den Fall, dass die Arbeit in unterschiedlichen Formen eingereicht wird (z.B. elektronisch, gedruckt,
geplottet, auf einem Datenträger) alle eingereichten Versionen vollständig übereinstimmen. Die Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without unauthorized assistance from third parties (in particular academic ghostwriting. I have not used any
other sources or aids than those indicated; this includes in particular software and services for language, text, and media
production. In the event that the work is submitted in different formats (e.g. electronically, printed, plotted, on a data carrier), I
declare that all the submitted versions are fully identical. I have not previously submitted this work, either in the same or a
similar form to an examination body.

______________________ ____________________________________
Ort, Datum/City, Date Unterschrift/Signature

*Nichtzutreffendes bitte streichen/Please delete as appropriate
Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.
§ 156 StGB (German Criminal Code): False Unsworn Declarations
Whosoever before a public authority competent to administer unsworn declarations (including Declarations of Academic
Integrity) falsely submits such a declaration or falsely testifies while referring to such a declaration shall be liable to
imprisonment for a term not exceeding three years or to a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.
§ 161 StGB (German Criminal Code): False Unsworn Declarations Due to Negligence
(1) If an individual commits one of the offenses listed in §§ 154 to 156 due to negligence, they are liable to imprisonment for a
term not exceeding one year or to a fine.
(2) The offender shall be exempt from liability if they correct their false testimony in time. The provisions of § 158 (2) and (3)
shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

______________________ ____________________________________
Ort, Datum/City, Date Unterschrift/Signature

Fischer, Lennart 433990

Adopting Kotlin Multiplatform in the Future Lab Aachen App

Aachen, 15.12.2024

Aachen, 15.12.2024

iii

Contents

Abstract vii

Überblick ix

Acknowledgments xi

Conventions xiii

1 Introduction 1

2 Related Work 5
2.1 App Development Approaches and Technologies 5

2.1.1 Taxonomy of App Technologies 6
2.1.2 Progressive Web Apps . 8
2.1.3 React Native . 10
2.1.4 Flutter . 11
2.1.5 Kotlin Multiplatform (KMP) 12

2.2 Similar Migration Projects . 13
2.2.1 Scientific Research . 14
2.2.2 Case Studies . 15

Progressive Web Apps . 16
React Native . 17
Flutter . 18
Kotlin Multiplatform . 19

3 Planning FLApp’s Cross-Platform Transition 21
3.1 Overview of Features and Structure 21
3.2 Motivation for the Cross-Platform Transition 23

3.2.1 Problems . 23
3.2.2 High-Level Goals . 24

3.3 Cross-Platform Framework Selection 25
3.3.1 Decision Frameworks . 25
3.3.2 Criteria-Based Comparison in the Context of FLApp 27

App Perspective . 27

iv Contents

Infrastructure Perspective . 29
Development Perspective . 30
User Perspective . 35

3.3.3 The Final Decision . 36

4 Migrating FLApp to Kotlin Multiplatform 39
4.1 Setup of KMP . 40

4.1.1 Repository Setup . 40
4.1.2 Module and Folder Setup . 41
4.1.3 Build Tools: Gradle . 42
4.1.4 Build Tools: iOS Integration . 45

4.2 Migration From Objective-C to Swift 46
4.3 Refactoring and Implementing Features With KMP 47

4.3.1 Implementing a Shared GPX Parser 47
4.3.2 Sharing Files and Resources . 48
4.3.3 Architecture Considerations & Dependency Injection 50
4.3.4 Moving to a new Data Format 54
4.3.5 Data Migration Using KMP . 56

5 Evaluation 59

6 Summary and Future Work 63
6.1 Summary and Contributions . 63
6.2 Future Work . 64

A Supporting Figures 67

B Code Samples 69

Bibliography 81

Index 85

v

List of Figures and Tables

2.1 App Taxonomy Proposed by Nunkesser (2018) 7
2.2 Classification of Cross-Platform Frameworks in App Taxonomy . . . 8

3.2 Navigation Storyboard of FLApp . 23
3.3 Relevant Criteria for CPF Choice of FLApp 27

4.1 Excerpt of the Directory Structure . 42
4.2 Specification of KMP Targets for the Common Module 44
4.3 Hierarchical Overview of the Source Set Collection 45
4.4 Old Architecture of FLApps Business Layer 50
4.5 New Architecture of FLApp’s Business Layer 51
4.6 Directory Structure of the New Provisional Data Model 56

A.1 Criteria of the Decision Framework for CPF by Rieger (2019) 68

vii

Abstract

This thesis presents the adoption of Kotlin Multiplatform (KMP) to facilitate a
cross-platform architecture for the Future Lab Aachen App (FLApp), an interactive
mobile guide to Aachen’s scientific and historical landmarks. Due to being built
as two native implementations for iOS and Android, FLApp suffered from code
duplication, platform inconsistencies, and maintainability issues. These problems
motivated the migration to a unified, cross-platform architecture while maintaining
feature parity and enhancing developer productivity.

In our work, we evaluated various cross-platform framework options and selected
KMP for FLApp because of the native-oriented features and incremental adop-
tion capabilities. We executed a migration plan that involved transitioning from
Objective-C to Swift and incrementally adopting KMP to unify the business layer.
Later, we evaluated the achievement of our goals and our developer experience
using KMP for FLApp.

We mitigated the previous issues of FLApp and created a stable foundation for
future work. We were able to significantly improve maintainability, code reuse,
and architectural consistency while preserving native user interfaces. The results
demonstrate that KMP is a suitable framework for native-to-cross-platform transi-
tions. The insights gained from this project provide valuable guidance for similar
migration efforts, covering everything from framework selection to execution.

ix

Überblick

Diese Arbeit untersucht die Einführung des Cross-Platform Frameworks Kotlin
Multiplatform (KMP) in der Future Lab Aachen App (FLApp). Die FLApp
ist ein interaktiver Guide, der die wissenschaftlichen und historischen Se-
henswürdigkeiten Aachens präsentiert. Ursprünglich wurde die FLApp als native
iOS- und Android App implementiert. Allerdings traten mit der Zeit erhebliche
technische Herausforderungen wie inkonsistentes Verhalten zwischen Plattformen
aufgrund von dupliziertem Code und Wartbarkeitsprobleme auf.

Um diese Probleme zu beheben, strebten wir die Migration zu einer einheitlichen,
plattformübergreifenden Lösung an, die zwar die Produktivität in der Entwicklung
steigern, aber die aktuelle Funktionalität nicht beeinträchtigen sollte. Dafür führten
wir eine detaillierte Evaluation der unterschiedlichen Framework-Optionen PWA,
React Native, Flutter und KMP für die FLApp durch, die uns schlussendlich
wegen der guten Interoperabilität mit den beiden Plattformen zu KMP geführt
hat. Der Migrationsprozess umfasste mehrere Schritte, darunter die Migration
von Objective-C auf Swift in der iOS App, die einheitliche Implementierung der
Geschäftslogik und Datenverwaltung in KMP sowie die Umsetzung von Lösun-
gen zur Verbesserung der Codequalität und Konsistenz.

Die Ergebnisse zeigten, dass KMP ein geeignetes Framework für die Cross-
Plattform Migrationen von nativen Apps ist. Es ermöglicht erhebliche Verbesserun-
gen in der Wartbarkeit, Codewiederverwendung und strukturellen Konsistenz,
während beispielsweise die native Benutzeroberfläche beibehalten werden kann.
Diese Migration löste nicht nur bestehende Probleme, sondern brachte auch eine
gute Grundlage für zukünftige Wartung und neue Funktionen. Von der Auswahl
eines geeigneten Frameworks bis hin zur Umsetzung, können unsere Erkenntnisse
wertvoll für ähnliche Migrationsprojekte sein.

xi

Acknowledgments

First, I would like to thank my supervisors, Kevin Fiedler and Oliver Nowak, for
their helpful support and advice while working on this thesis.

I also want to thank Prof. Dr. Jan Borchers and Prof. Dr. Ulrik Schroeder for their
time and expertise in examining this thesis.

Lastly, I want to thank my family and friends, who have always supported me and
my work.

xiii

Conventions

Throughout this thesis we use the following conventions:

• The thesis is written in American English.

• The first person is written in plural form.

• For unidentified third persons we use the pronoun
they/their.

Short excursuses are set off in colored boxes.

EXCURSUS:
Excursuses are set off in orange boxes.

Where appropriate, paragraphs are summarized by one or This is a summary of a

paragraph.two sentences that are positioned at the margin of the page.

Source code and implementation symbols are written in
typewriter-style text.

1

Chapter 1

Introduction

The Future Lab Aachen App1 (FLApp) is an interactive mo- FLApp is a native app

available on iOS and

Android.

bile guide to Aachen’s scientific and historical sites. It uses
GPS navigation and augmented reality to present multime-
dia content like audio, videos, and 3D models. Initially de-
veloped in 2017, the app runs natively on iOS and Android.
It was initially built with Objective-C for iOS and Java, later
switching to Kotlin for Android.

While native apps provide vendor-optimized performance Building and

maintaining two native

apps requires

significant effort.

and deep integration into the platform, building and main-
taining two native apps can be time-consuming and re-
quire knowledge of both technologies. Code duplication
may introduce inconsistencies between the platforms, and
new features and bug fixes must be addressed individually
[Amatya and Kurti, 2014; Corral et al., 2012].

Having separate native implementations for iOS and An- FLApp also faced

problems due to

individual native

implementations.

droid brought several challenges to FLApp’s development.
One major issue arose in how each platform handled con-
tent parsing from the local plist files. This issue caused
inconsistencies in the display of content on both plat-
forms. Moreover, the architectural approaches diverged be-
tween platforms: iOS utilized the Model-View-Controller
(MVC) pattern, while Android implemented the Model-
View-View Model (MVVM).

1 https://futurelab-aachen.de/en/app

https://futurelab-aachen.de/en/app

2 1 Introduction

Cross-platform mobile frameworks offer solutions for im-Overview of

cross-platform

development

approaches.

proving maintainability, removing code duplication, and
avoiding inconsistencies in the app experience [Corral
et al., 2012; Amatya and Kurti, 2014]. Developers can build
applications using web-based technology like Progressive
Web Apps (PWAs) or Ionic. Frameworks such as React
Native or Flutter offer another approach to cross-platform
development. Kotlin Multiplatform (KMP) offers a more
native-oriented solution and enables the sharing of busi-
ness logic while keeping native UI implementations and
the flexibility to integrate platform-specific frameworks as
needed.

We aimed to migrate FLApp to cross-platform technologyMigration goals: UX,

shared code, and

improve maintainability.

while ensuring a good user experience (UX), establishing a
unified codebase with consistent architecture, and enhanc-
ing overall maintainability.

Based on our cross-platform technologies and literature re-We selected KMP as

the best fit for FLApp. view evaluation, KMP emerged as a suitable solution for
FLApp. KMP enables us to maintain the native user in-
terface and complex features like Augmented Reality and
iBeacon Tracking on iOS and Android while easily sharing
the underlying data model layers between both app ver-
sions. This technology selection ensures a consistent app
architecture across both platforms.

KMP provides a good developer experience, althoughKMP brought good

developer experience,

but has some limitations

in interoperability.

Kotlin-Swift interoperability currently relies on Objective-
C, complicating integration with Swift-only frameworks.
JetBrains’ upcoming direct Kotlin-to-Swift export2 feature
promises to improve up on this issue.

Selecting KMP for FLApp’s cross-platform transitionKMP was a great

choice for FLApp, and

we achieved our

migration goals.

proved to be a good decision. We maintained our native
user interface and avoided a full technology migration. Im-
plementing a shared data layer allowed us to reduce code
duplication, resolve existing bugs, and ensure consistent
content parsing across platforms without introducing re-
gressions or performance issues. Our new app architec-
ture will empower new developers to streamline future up-

2 https://blog.jetbrains.com/kotlin/2024/10/kotlin-multiplatform-
development-roadmap-for-2025/#kotlin-to-swift-export

https://blog.jetbrains.com/kotlin/2024/10/kotlin-multiplatform-development-roadmap-for-2025/#kotlin-to-swift-export
https://blog.jetbrains.com/kotlin/2024/10/kotlin-multiplatform-development-roadmap-for-2025/#kotlin-to-swift-export

3

dates and simplify maintenance by consolidating core logic
across iOS and Android.

In Chapter 2, we present cross-platform approaches, re-
spective frameworks, and examples for native-to-cross-
platform migrations. Chapter 3 describes the goals of our
migration and the decision process, along with the most
important criteria and why we finally selected KMP for
FLApp. We describe the migration process of FLApp to
KMP in Chapter 4. Then, we evaluate the satisfaction of
the requirements and our experience, especially from a de-
velopment perspective, in Chapter 5. Finally, in Chapter
6, we summarize our work and propose future work for
cross-platform research and regarding FLApp.

5

Chapter 2

Related Work

2.1 App Development Approaches and
Technologies

Since the first mobile devices were introduced, many ap- Native vs.

cross-platform is a key

distinction in mobile

development.

proaches have been taken to developing apps for the mo-
bile operating systems iOS and Android. One of the fun-
damental distinctions in mobile app development lies be-
tween native and cross-platform approaches [Nawrocki
et al., 2021].

The term native app was first popularized by Steve Jobs1 Native apps use

first-party SDKs

provided by platform

vendors.

when he introduced the first native APIs and tools for
developing iOS apps. Native apps are developed us-
ing the first-party software development kits (SDKs) of-
fered by platform vendors like Apple and Google. These
SDKs use platform-specific programming languages such
as Objective-C and Swift for iOS and Java or Kotlin for An-
droid [Nunkesser, 2018; Amatya and Kurti, 2014].

In contrast, cross-platform development (CPD) refers to the Using cross-platform

development creates

apps for multiple

platforms using a single

codebase.

practice of creating software for multiple platforms from a
single codebase. As stated by Segun-Falade et al. [2024],
this eliminates the use of two individual code bases, en-

1 https://itunes.apple.com/de/podcast/wwdc-2008-keynote-
address/id275834665

https://itunes.apple.com/de/podcast/wwdc-2008-keynote-address/id275834665
https://itunes.apple.com/de/podcast/wwdc-2008-keynote-address/id275834665

6 2 Related Work

abling developers to write code once and deploy it across
different operating systems with minimal adjustments.

Cross-platform frameworks (CPFs) consist of tools, li-Cross-platform

frameworks provide

tools for building

cross-platform apps.

braries, and plugins that enable cross-platform develop-
ment. These frameworks offer a unified development en-
vironment, components for user interfaces (UI), and other
essential functionality. Often, additional platform-specific
code allows performance improvements or the implemen-
tation of capabilities that the CPF itself does not offer.

2.1.1 Taxonomy of App Technologies

There are many different technological approaches to howTaxonomies of app

technologies help group

various technological

approaches.

cross-platform frameworks achieve CPD. Therefore, early
on efforts were made to classify the CPFs into different cat-
egories depending on the technological approach.

Till today, the terms Web, Hybrid, and Native (WHN)Web/Hybrid/Native

taxonomy is widely

used but not very

expressive.

are often used to classify mobile development approaches
[Behrens, 2010; Pinto and Coutinho, 2018]. This categoriza-
tion became increasingly vague as more and more frame-
works fell into the hybrid category. This ambiguity has
driven the development of more nuanced classifications to
describe modern app technologies [Nunkesser, 2018].

Early extensions to the WHN taxonomy by Behrens [2010]Behrens was amongst

the first to extend the

WHN classification.

added two categories: Interpreted Apps, which combine
native UI elements with platform-independent logic, and
Generated Apps, which produce fully native applications
for each platform from a single code base. Rahul Raj
and Tolety [2012] categorized approaches as Web, Hy-
brid, Interpreted, and Cross-compiled, while El-Kassas
et al. [2017] proposed a more detailed classification, includ-
ing Compilation, Component-based, Interpretation, Mod-
eling, Cloud-based, and Merged approaches.

2.1 App Development Approaches and Technologies 7

1. Endemic Apps use the native SDKs provided by the OS vendors. These apps
offer vendor-optimized performance and tight integration with the platform.

2. Pandemic Apps group cross-platform approaches supported natively by all
major OSs. This includes:

• Web Apps leverage HTML, CSS, and JavaScript to create apps accessi-
ble through a browser or a minimal app shell.

• Hybrid Web Apps use frameworks like Ionic to embed web technolo-
gies within a native app container.

• Hybrid Bridged Apps bridge JavaScript with native UI elements
through frameworks such as React Native.

• System Language Apps leverage shared system-level languages like
C++ for game engines (e.g., Unity, Unreal Engine) or frameworks like
Qt.

3. Ecdemic Apps are developed using a language or toolset not native to the
OS. For example:

• Foreign Language Apps are built using frameworks like Flutter or
Kotlin Multiplatform that compile non-native languages into native
code for each platform.

Figure 2.1: Categories and subcategories proposed by Nunkesser [2018] to classify
different mobile development approaches.

Building on earlier classifications, Nunkesser [2018] intro- Modern CPD

approaches can be

categorized as

Endemic, Pandemic,

and Ecdemic.

duced a taxonomy that organizes mobile development ap-
proaches into the three main categories Endemic Apps,
Pandemic Apps, and Ecdemic Apps along with sub-
categories for a more detailed comparison (Figure 2.1).

This taxonomy, visualized in Figure 2.2, offers a clear and Nunkesser’s taxonomy

provides a clear

foundation for exploring

cross-platform

approaches.

structured overview of the foundational approaches to mo-
bile cross-platform development. For us, it serves as a help-
ful framework for selecting representative technologies to
explore in detail.

Using this taxonomy, we researched popular CPF repre- We selected popular

representatives of the

taxonomy’s categories

for detailed research.

sentatives based on literature and usage statistics for each
category. We decided to exclude Hybrid Web Apps from

8 2 Related Work

Figure 2.2: Categorization of cross-platform technologies proposed by
Nunkesser [2018] adapted to include representative framework.

this selection due to their significant overlap with Hybrid
Bridged Apps, which we prioritize due to their enhanced
capabilities despite both using JavaScript primarily. Simi-
larly, System Language Apps are excluded due to limited
available literature2, particularly regarding Qt3. We also
will not present Endemic (Native) Apps as the objective of
our work remains the cross-platform migration.

A comparative review of cross-platform frameworks is de-A detailed evaluation is

provided in chapter 3,

aligned with FLApp’s

migration needs.

ferred to chapter 3, where we evaluate these technologies
in the context of FLApp’s migration requirements. This
approach ensures that decisions are informed by practical
needs rather than abstract theoretical considerations.

2.1.2 Progressive Web Apps

Progressive Web Apps (PWAs)4 leverage web technologiesPWAs use web

technologies to provide

app-like experiences.

(HTML, CSS, and JavaScript) to provide an app-like expe-
rience across multiple platforms. After being developed as

2 This does not hold for Game Engines, but they do not play a role in
our research.

3 https://doc.qt.io/qt-6/mobiledevelopment.html
4 https://web.dev/progressive-web-apps

https://doc.qt.io/qt-6/mobiledevelopment.html
https://web.dev/progressive-web-apps

2.1 App Development Approaches and Technologies 9

an open web standard, PWAs have been adopted by major
companies, including Twitter5, Uber6, and Pinterest7.

Enhanced capabilities can be implemented using service Services workers

enable offline caching

and background

synchronization.

workers and web app manifests. Service Workers8 enable
offline caching, background synchronization, and push no-
tifications.

While PWAs can be used in a web browser like any PWAs can be

distributed via a web

browser but also

through app

marketplaces.

regular website, they can also be added to the home
screen, providing an app-like experience. Through tools
like PWABuilder9, PWAs can be bundled into applications
shipped to mobile app marketplaces.

PWAs can use Web APIs10 for advanced platform integra- PWAs can access

some advanced device

capabilities via Web

APIs.

tion with the operating system (OS). These APIs include
geolocation, camera access, basic sensor data, and simpli-
fied push notifications. However, compared to other CPFs,
access to advanced device features remains limited, with
browser vendors and platform providers maintaining strict
control over API exposures.

Developers can create PWAs using popular web frame- Browser developer tools

help to build and

improve PWAs.

works like React, Angular, and Vue.js. Modern browsers
provide debugging and performance analysis tools11

specifically designed for PWA development. Frameworks
like Workbox12 simplify service worker implementation
and caching strategies.

5 https://web.dev/case-studies/twitter
6 https://www.uber.com/en-EC/blog/m-uber
7 https://business.adobe.com/blog/basics/progressive-web-app-

examples
8 https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
9 https://www.pwabuilder.com
10 https://developer.mozilla.org/en-US/docs/Web/API
11 https://developer.chrome.com/docs/devtools/progressive-web-

apps
12 https://developers.google.com/web/tools/workbox

https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://www.pwabuilder.com
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.chrome.com/docs/devtools/progressive-web-apps
https://developers.google.com/web/tools/workbox
https://web.dev/case-studies/twitter
https://www.uber.com/en-EC/blog/m-uber
https://business.adobe.com/blog/basics/progressive-web-app-examples
https://business.adobe.com/blog/basics/progressive-web-app-examples

10 2 Related Work

2.1.3 React Native

React Native13 is an open-source, cross-platform frame-React Native is widely

used across the app

marketplaces.

work for developing mobile applications for iOS and An-
droid. React Native was initially developed by Facebook
in 2015 after they experienced problems using HTML5
for the mobile version of Facebook14. React Native is
used by many large companies like Microsoft, Amazon,
and Shopify15. According to App Figures SDK analysis16

(November 2024), 13% of the free iOS apps and 16% of the
free Android apps are built using React Native.

Unlike other frameworks (cf. Hybrid Web Apps) that relyA JavaScript bridge

controls native user

interface.

on webviews to render the user interface, React Native di-
rectly utilizes the host platform’s native rendering APIs.
React Native utilizes a "bridge" that translates JavaScript
calls into the corresponding native APIs, allowing seamless
communication between the JavaScript code and the native
platform features [Eisenman, 2015].

User Interfaces are written in JSX17, a syntactical combina-React Native uses JSX

for user interfaces and

exposes several

platform APIs.

tion of HTML and JavaScript. These components describe
the structure and appearance of the user interface. A sim-
plified subset of CSS is used for styling, primarily relying
on Flexbox for layout. React Native also provides access
to various host platform APIs, including device features
like camera, location, and storage, made available through
asynchronous JavaScript interfaces [Zammetti, 2018].

Native modules18 written in platform languages exposeNative Modules and

Native Components

allow interoperability

with native code.

their functionality to the JavaScript code through the
bridge, allowing JavaScript code to invoke native methods
and receive data back. Native Components provide a way to
wrap native UI elements and expose them as React compo-
nents that can be used within the JavaScript codebase [Paul
and Nalwaya, 2019].

13 https://reactnative.dev
14 https://mashable.com/archive/html5-biggest-mistake
15 https://reactnative.dev/showcase
16 https://appfigures.com/top-sdks/development/all
17 https://facebook.github.io/jsx
18 https://reactnative.dev/docs/native-platform

https://reactnative.dev
https://appfigures.com/top-sdks/development/all
https://facebook.github.io/jsx
https://reactnative.dev/docs/native-platform
https://mashable.com/archive/html5-biggest-mistake
https://reactnative.dev/showcase

2.1 App Development Approaches and Technologies 11

There is no dedicated Integrated Development Environ- React Native has IDE

plugins and additional

developer tools.

ment (IDE) for writing React Native apps. However, plug-
ins can be used in IDEs like IntelliJ19 or Visual Studio Code
to improve syntax highlighting, code completion, debug-
ging, and on-device testing. Hot reloading allows devel-
opers to get feedback on changes in code without restart-
ing the app. Additionally, React Native DevTools20 and
Chrome Developer Tools can be used to debug JavaScript
code.

2.1.4 Flutter

Flutter21 is an open-source framework for developing Flutter is a widely used

cross-platform

framework by Google.

cross-platform mobile, web, and desktop applications from
a single codebase. Google originally developed Flutter in
2017, and it is used by prominent organizations like Google,
Alibaba, BMW, and eBay22. According to App Figures SDK
analysis23 (November 2024), 12% of the free iOS apps and
18% of the free Android apps are built using Flutter.

Flutter utilizes the Dart programming language to pro- Flutter uses a Dart as

the primary language.duce machine code via just-in-time (JIT) and ahead-of-time
(AOT) compilation of the Dart VM24. The framework ren-
ders the application using the Skia and Impeller25 graphics
engines. This approach ensures consistent rendering across
platforms by drawing every pixel directly, which provides
exact UI reproduction regardless of the target device.

Developers compose user interfaces using Dart and Flut- Widgets describe the

user interface hierarchy.ter’s declarative widget-based approach. These compo-
nents describe the entire visual hierarchy through compos-
able UI elements called widgets. Styling and layout use the
composition of widgets using grids, columns, rows, and

19 https://www.jetbrains.com/help/idea/react-native.html
20 https://reactnative.dev/docs/react-native-devtools
21 https://flutter.dev
22 https://flutter.dev/showcase
23 https://appfigures.com/top-sdks/development/all
24 https://dart.dev/overview#platform
25 https://docs.flutter.dev/perf/impeller

https://www.jetbrains.com/help/idea/react-native.html
https://reactnative.dev/docs/react-native-devtools
https://flutter.dev
https://appfigures.com/top-sdks/development/all
https://appfigures.com/top-sdks/development/all
https://dart.dev/overview#platform
https://docs.flutter.dev/perf/impeller
https://flutter.dev/showcase

12 2 Related Work

stacks [Payne, 2019]. Cupertino and Material components26

design systems bring native-like styling of UI elements.

Platform Channels27 allow bidirectional communicationPlatform Channels

bring interoperability

with native code.

between Dart code and native code. This concept allows
developers to invoke platform-specific APIs, implement
custom native functionality, and integrate existing native
modules into Flutter applications [Cheng, 2019].

Flutter provides a set of development tools, including hotFlutter plugins are

available for IDEs. reload for instant code changes, the Flutter CLI, and inte-
gration with popular IDEs like IntelliJ IDEA and Visual Stu-
dio Code28. Flutter DevTools29 offers debugging features,
performance profiling, and widget inspection capabilities
[Payne, 2019].

2.1.5 Kotlin Multiplatform (KMP)

Kotlin Multiplatform30 (KMP) is an open-source frame-KMP enables code

sharing across

platforms.

work for cross-platform development. It enables devel-
opers to share code seamlessly between iOS and Android
while allowing native integration where necessary. De-
veloped by JetBrains in 2017 and stabilized in 2023, KMP
has been adopted by prominent companies such as Netflix,
Philips, Quizlet, and McDonald’s31.

Kotlin Multiplatform uses a project structure that sepa-Kotlin’s compiler can

compile to JVM and

LLVM for iOS.

rates shared logic from platform-specific implementations
to achieve code sharing. Kotlin’s different compiler back-
ends allow compilation for various platforms. In the case
of mobile, it creates JVM bytecode for Android and native
LLVM32 code for iOS.

26 https://docs.flutter.dev/ui/widgets
27 https://docs.flutter.dev/platform-integration/platform-channels
28 https://docs.flutter.dev/tools
29 https://docs.flutter.dev/tools/devtools
30 https://jetbrains.com/kotlin-multiplatform
31 https://jetbrains.com/help/kotlin-multiplatform-dev/case-

studies.html
32 LLVM is the compiler and toolchain technology used on Apple’s plat-

forms.

https://docs.flutter.dev/ui/widgets
https://docs.flutter.dev/platform-integration/platform-channels
https://docs.flutter.dev/tools/devtools
https://jetbrains.com/kotlin-multiplatform
https://docs.flutter.dev/tools
https://jetbrains.com/help/kotlin-multiplatform-dev/case-studies.html
https://jetbrains.com/help/kotlin-multiplatform-dev/case-studies.html
https://llvm.org

2.2 Similar Migration Projects 13

Native Interoperability is a key feature of Kotlin Multiplat- KMP allows integration

with native libraries for

gradual adoption.

form, enabling integration with existing native codebases.
Developers can directly call Objective-C, Swift, and Java li-
braries from Kotlin code and vice versa. Therefore, expec-
t/actual33 declarations are used to implement this behav-
ior. They allow developers to define shared interfaces with
platform-specific implementations (Listing B.1).

The Compose Multiplatform framework34 optionally ex- Compose Multiplatform

allows UI sharing

across platforms using

a single Kotlin

codebase.

tends the declarative UI framework of Jetpack Compose
across multiple platforms, enabling developers to share
user interface code between Android, iOS, desktop, and
web applications using a single Kotlin codebase.

Kotlin Multiplatform integrates with IntelliJ and Android KMP integrates with

IntelliJ, Android Studio,

and JetBrains Fleet for

cross-platform

development support.

Studio. KMP provides tooling that includes a multiplat-
form plugin, debugging support, and integration with ex-
isting build systems like Gradle. Xcode is used to write iOS-
specific implementations. However, JetBrains’ new IDE
Fleet35 aims to provide a KMP environment with language
support for both Kotlin and Swift, eliminating the need for
Xcode for most of the time.

2.2 Similar Migration Projects

After reviewing potential cross-platform technologies
based on the taxonomy outlined by Nunkesser [2018], we
aim to assess the suitability of these technologies for the
cross-platform migration of FLApp. To gain insights, we
examined similar migration projects documented in both
scientific literature and practical case studies, with a par-
ticular focus on transitions from native implementations
to the identified CPF candidates Progressive Web Apps
(PWA), React Native, Flutter, and Kotlin Multiplatform
(KMP).

33 This can be compared to the object-oriented interface/implementa-
tion paradigm.

34 https://www.jetbrains.com/compose-multiplatform
35 https://www.jetbrains.com/fleet

https://www.jetbrains.com/compose-multiplatform
https://www.jetbrains.com/fleet

14 2 Related Work

2.2.1 Scientific Research

Zimmermann [2021] is one of the few academic contri-Zimmermann [2021]

researched app

migration examples and

strategies.

butions focused on migrating native mobile applications
to cross-platform solutions. Their work examines general
software modernization and migration approaches, cost es-
timation, and strategies for migrating from native to cross-
platform technology.

Two migration approaches are compared by Zimmer-Two main migration

approaches are

reimplementation and

incremental adoption.

mann [2021]: complete reimplementation and incremental
adoption. They note that reimplementation allows for com-
plete modernization but comes with high risks and costs.
At the same time, incremental adoption is more flexible but
technically challenging due to the interaction between old
and new components.

They found a significant gap in academic literature re-There needs to be more

academic research on

native-to-cross-platform

migrations.

garding mobile app migrations and a particular shortage
of those from native to cross-platform frameworks. Their
other sources include blog posts and conference talks from
industry sources highlighting the lack of standardized aca-
demic research.

Zimmermann [2021] also discusses the potential migrationThe potential CPF

migration of Phase6

app illustrates some

important factors and

questions.

of the vocabulary app Phase6. They illustrate how factors
such as technology selection, feature prioritization, archi-
tecture planning, and team alignment play crucial roles in
determining success. However, they cautione that these
findings are not universally applicable but offer a starting
point for further exploration.

Despite these insights, Zimmermann [2021] concluded thatZimmermann calls for

more scientific

research.

there is no general solution for mobile app migrations.
The need for further academic research and industry-
standardized methodologies is clear, especially in address-
ing successful and failed migration attempts, which can of-
fer valuable lessons for future projects.

2.2 Similar Migration Projects 15

In another research, Cheon and Chavez [2021] rewrite a na- Other research

achieved a significant

reduction in code using

Flutter, but

reimplementing the

user interface was

time-consuming.

tive Android classroom quiz app using Flutter. They espe-
cially described and compared the architecture of the im-
perative Android app and the reactive Flutter app. Their
biggest challenge was converting the thread-based net-
working code to asynchronous functions, which resulted
in cleaner code. The resulting app is 37% smaller than the
Android app – 6949 source lines of code (SLOC) for Java
and 4351 SLOC of Dart – and implementing the user inter-
face required most of their time. They only partially recom-
mended migrating native apps to Flutter in 2021 due to the
lack of necessary built-in SDK features and tools.

2.2.2 Case Studies

As already observed by Zimmermann [2021], the most Real-world projects

offer the most valuable

migration insights.

valuable insights into similar migration projects are found
in real-world migration projects. We, therefore, present
case studies on native-to-cross-platform migrations for our
researched CPF candidates.

The case studies presented in this thesis were primarily Case studies are often

commissioned and

published by framework

vendors.

sourced from the official websites or publications of the
respective platform providers (e.g., JetBrains, Meta, and
Google). It is important to note that these case studies are
typically commissioned by the platform providers, either
directly or indirectly, and are published or promoted by
them.

It is important to approach the given examples cautiously, The case studies must

be cautiously

approached due to the

release date.

particularly regarding their relevance over time. Cross-
platform technologies constantly evolve, so the factors in-
fluencing the decision to adopt or reject a particular frame-
work may shift as new advancements and updates emerge.

Moreover, these case studies focus only on successful and Case studies on

migration or

development

experiences often

exhibit a positive bias.

beneficial experiences, often leaving out failed projects or
long-term issues that may arise after a decision. This con-
text has to be considered in the analysis to maintain objec-
tivity.

16 2 Related Work

While the case studies differ in scope, complexity, teamNot all examples are

similar to our project in

all aspects but share

similar goals and

priorities.

size, and commercial focus, they share similar technolog-
ical needs. These include faster development, easier main-
tenance, and improved team collaboration. By analyzing
their methods, we can adopt practices and tools that sup-
port our goals, especially in workflows and integration
strategies.

Progressive Web Apps

We could not find any case studies that involved migratingWe found no examples

of native-to-PWA

migrations.

from native apps to PWAs. This is probably the case be-
cause PWAs are limited in their functions, and apps could
quickly lose capabilities during migration and thus affect
the user experience [Majchrzak et al., 2018]. Nevertheless,
there are some interesting examples of the use of PWAs.

In a case study presented by Google36 and Twitter37 in 2007,Twitter Lite achieved

near-native

performance with a lot

less bandwidth usage.

engineer Nicolas Gallagher explains their experience of im-
plementing the PWA Twitter Lite. According to the case
study, it achieves near-native app performance while only
downloading 600KB of data, compared to the 23.5MB re-
quired to download the native Android app. They also
noticed a 65% increase in pages per session, a 75% rise in
tweets sent, and a 20% drop in bounce rate.

The Twitter Lite PWA is also optimized for data-sensitiveTwitter Lite optimizes for

low-coverage users. users by serving smaller media files, enabling a data saver
mode, and caching resources. These enhancements re-
duced data consumption by up to 70% in specific scenarios
and were especially valuable for users with limited band-
width and lower-end devices in emerging markets.

36 https://web.dev/case-studies/twitter
37 https://blog.x.com/engineering/en_us/topics/open-source/2017/

how-we-built-twitter-lite

https://web.dev/case-studies/twitter
https://blog.x.com/engineering/en_us/topics/open-source/2017/how-we-built-twitter-lite
https://blog.x.com/engineering/en_us/topics/open-source/2017/how-we-built-twitter-lite

2.2 Similar Migration Projects 17

Other notable case studies on PWA usage include the use at Other companies found

similar advantages in

PWAs.

Pinterest38, Tinder39 and Uber40, who found similar advan-
tages in creating lightweight, app-like mobile experiences.

React Native

In 2020, Shopify announced their ambitions of migrating all Shopify aimed to

migrate native apps to

React Native.

their native applications to cross-platform technology us-
ing React Native in their engineering blog41. While they
had successful native mobile apps, they aimed to get more
effective by bringing the power of JavaScript and the web
to mobile and consolidating iOS and Android development
into a single stack.

The acquisition of Tictail, which successfully used React Shopify’s early

experiments exceeded

code sharing goals.

Native at that time, React Native’s performance improve-
ments, and the existing use of the similar React framework
(web) at Shopify led them to consider a complete switch to
React Native. Their early experiments in a few applications
showed code sharing of 95%, exceeding the goal of 80%,
and the team felt way more productive.

Two years later, in 2022, Mauricio de Meirelles (Shopify Shopify initially tried

incremental adoption

but faced challenges.

Core Mobile team) summarized the progress of Shopify’s
migration to React Native42. The migration effort focused
on Shop, Shopify’s most significant mobile application.
They adopted React Native for new features but quickly
realized that this would require maintaining three different
architectures, and interoperability with existing native code
would become very time-consuming.

Because of this, they then put complete resources into it- Shopify switched to

complete iterative

rebuild in React Native.

eratively rebuilding the app in React Native while directly
implementing all new features with that technology. There-

38 https://medium.com/dev-channel/a-pinterest-progressive-web-
app-performance-case-study-3bd6ed2e6154

39 https://medium.com/@addyosmani/a-tinder-progressive-web-
app-performance-case-study-78919d98ece0

40 https://www.uber.com/en-NL/blog/m-uber
41 https://shopify.engineering/react-native-future-mobile-shopify
42 https://shopify.engineering/migrating-our-largest-mobile-app-to-

react-native

https://medium.com/dev-channel/a-pinterest-progressive-web-app-performance-case-study-3bd6ed2e6154
https://medium.com/dev-channel/a-pinterest-progressive-web-app-performance-case-study-3bd6ed2e6154
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://www.uber.com/en-NL/blog/m-uber
https://shopify.engineering/react-native-future-mobile-shopify
https://shopify.engineering/migrating-our-largest-mobile-app-to-react-native
https://shopify.engineering/migrating-our-largest-mobile-app-to-react-native

18 2 Related Work

fore, they introduced an internal React Native training pro-
gram for native Swift and Kotlin developers. They es-
tablished migration criteria based on RICE scoring (reach,
impact, confidence, and effort) for prioritizing application
parts, ensured stable releases of all migrated parts by using
feature flags before completely removing the native code,
and even introduced an internal dashboard on the migra-
tion process. They mention reducing implementation dif-
ferences between iOS and Android and simpler code as ad-
ditional benefits of the migration efforts.

Coinbase also migrated from native to React Native43 inCoinbase also migrated

to React Native using a

complete rewrite.

2020 but opted for a complete rewrite due to the lessons
learned from AirBnB’s failed React Native adoption in
201844 where one of the key problems was the incremen-
tal adoption of new features, which introduced significant
overhead going forward (similar to Shopify’s experiences).

Flutter

Prior to adopting Flutter, french railway operator SNCF ranSNCF operated two

separate native apps for

10 years.

two separate native applications for ten years45 (one for
long-distance travel and one for day-to-day mobility). The
development and maintenance required four separate de-
velopment teams working with diverse technologies, lead-
ing to inconsistencies in development practices, app func-
tionality, and user experience.

SNCF wanted to improve its efficiency and combine its fourSNCF chose Flutter

after evaluating KMP

and React Native.

native implementations into one implementation using a
cross-platform framework. They, therefore, built proof-of-
concepts for KMP, React Native, and Flutter and had a list
of criteria for their selection. They found KMP a good can-
didate but did not want to write their UIs twice as the Com-
pose Multiplatform framework was unavailable in 2020.
React Native did not provide the required developer expe-

43 https://www.coinbase.com/de/blog/announcing-coinbases-
successful-transition-to-react-native

44 https://medium.com/airbnb-engineering/sunsetting-react-native-
1868ba28e30a

45 https://www.youtube.com/watch?v=mKerYStzfIw

https://www.coinbase.com/de/blog/announcing-coinbases-successful-transition-to-react-native
https://www.coinbase.com/de/blog/announcing-coinbases-successful-transition-to-react-native
https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a
https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a
https://www.youtube.com/watch?v=mKerYStzfIw

2.2 Similar Migration Projects 19

rience. SNCF chose Flutter for its good performance, ma-
ture state, good developer experience, and trusted partners.

SNCF set a timeframe of 18 months for a complete rewrite SNCF executed a full

rewrite with a

Backend-for-Frontend in

18 months.

of the new app. They chose a Backend-for-Frontend ap-
proach, moving all presentation logic, such as model, map-
ping, and localization, to the server for better consistency
and a smaller frontend size. An OpenAPI specification was
used to generate API clients in Flutter automatically. They
also implemented automated testing, ensuring app stabil-
ity when iterating quickly.

By adopting Flutter, SNCF significantly accelerated their Flutter adoption

accelerated

time-to-market and

improved code sharing.

time-to-market, enabling weekly feature releases and
achieving 90% code sharing across platforms46. Although
challenges like shader compilation issues on older Android
devices emerged, SNCF collaborated with Google to re-
solve them, with the now-released advancements like Im-
peller to enhance rendering performance.

Other notable native to Flutter migrations include BMW’s BMW also migrated

from a native iOS app

to Flutter.

switch from a native iOS app to Flutter, which allowed
BMW to release their My BMW app for Android for the first
time47.

Kotlin Multiplatform

Cash App transitioned to Kotlin Multiplatform to improve Cash App transitioned

to KMP to replace

shared JS code.

their development speed and collaboration between the
iOS and Android teams. Before this migration, the appli-
cation relied on shared JavaScript code to achieve cross-
platform functionality. However, this approach presented
challenges in maintaining performance and platform-
specific features48.

The team first started integrating KMP into their open- Cash App adopted

KMP incrementally for

shared logic.

source library SQLDelight49, which they also use in Cash

46 https://flutter.dev/showcase/sncf-connect
47 https://flutter.dev/showcase/bmw
48 https://kotlinlang.org/lp/multiplatform/case-studies/cash-app
49 https://github.com/sqldelight/sqldelight

https://github.com/sqldelight/sqldelight
https://flutter.dev/showcase/sncf-connect
https://flutter.dev/showcase/bmw
https://kotlinlang.org/lp/multiplatform/case-studies/cash-app

20 2 Related Work

App. This step allowed the team to evaluate KMP in a con-
trolled environment. Following its success, KMP was in-
crementally introduced to other shared application parts.
By adopting KMP, the team maintained the native UI while
sharing complex business logic and data models across
platforms.

This migration has brought the iOS and Android teamsKMP improved team

alignment and reduced

development overhead.

closer together. Developers retained their preferred native
toolchains and minimized disruption to existing workflows
but also benefited from the unified codebase reducing du-
plication. The team was able to improve consistency across
platforms and reduce development overhead.

Another notable example of Kotlin Multiplatform adop-McDonald’s adopted

KMP incrementally for

isolated components.

tion is McDonald’s, which began using KMP in 2023 to
address code redundancy in their Global Mobile App50.
Rather than overhauling the entire application, McDon-
ald’s adopted KMP incrementally, focusing on isolated
parts such as networking and data storage. This selective
integration allowed the team to share functionality with-
out compromising the responsiveness and native feel of the
app. Leveraging in-house KMP libraries improved devel-
opment speed in managing requirements like diverse mar-
kets.

50 https://medium.com/mcdonalds-technical-blog/mobile-
multiplatform-development-at-mcdonalds-3b72c8d44ebc

https://medium.com/mcdonalds-technical-blog/mobile-multiplatform-development-at-mcdonalds-3b72c8d44ebc
https://medium.com/mcdonalds-technical-blog/mobile-multiplatform-development-at-mcdonalds-3b72c8d44ebc

21

Chapter 3

Planning FLApp’s
Cross-Platform
Transition

3.1 Overview of Features and Structure

Future Lab Aachen App (FLApp) is a mobile application FLApp is a mobile

guide for scientific

topics in Aachen.

that provides an interactive experience, guiding users to
Aachen’s scientific and historical landmarks. The app uses
GPS to guide users to explore significant locations.

FLApp is build with a drill-down navigation pattern FLApp uses a drill-down

navigation pattern.(Figure 3.2). The main screen consists of a map displaying
all stations (POIs) throughout Aachen alongside a sidebar
menu that lists these stations. Users can interact with the
map or the list to select a station of interest, which takes
them to a detailed overview page.

Each POI’s overview page (Figure 3.1b) provides rich mul- Each POI has

multimedia content

(images, videos, audio

& augmented reality)

timedia content to enhance the user experience. An au-
dio guide explains the significance of the site. Additional
quotes, articles (Figure 3.1c), and visual elements such as
images or videos complement this. Furthermore, AR fea-
tures bring the content into reality, allowing users to inter-

22 3 Planning FLApp’s Cross-Platform Transition

(a) The user is guided along
a route of all stations using
GPS capabilities.

(b) Each POI has an audio
guide, article teasers, and
sometimes AR content.

(c) Articles provide in-depth
information about a topic us-
ing images and videos.

Figure 3.1: The three most important screens of the application are the map, the
overview page of a point of interest, and the article screen.

act with 3D models or virtual representations of historical
and scientific concepts.

FLApp was initially developed and released in 2017. TheFLApp used

Objective-C with UIKit

for iOS and Kotlin with

Android View.

iOS and Android apps were implemented as native appli-
cations using the iOS SDK (UIKit and Objective-C) and An-
droid SDK (View System and Kotlin). Both implementa-
tions use advanced platform features like Core Location,
ARKit (iOS), and AltBeacon1 or SceneForm2.

1 https://github.com/AltBeacon/android-beacon-library
2 https://github.com/google-ar/sceneform-android-sdk

https://github.com/AltBeacon/android-beacon-library
https://github.com/google-ar/sceneform-android-sdk

3.2 Motivation for the Cross-Platform Transition 23

Figure 3.2: FLApp uses a drill-down navigation pattern to display information
about POIs and related topics. A couple of utility screens are used to provide addi-
tional information.

3.2 Motivation for the Cross-Platform
Transition

FLApp has accumulated significant technical debt. Over FLApp built up technical

debt that we want to

resolve.

time, the app’s technology, architecture, and data model
have become increasingly difficult to maintain. In par-
ticular, the iOS implementation has remained mostly un-
changed since 2017, contributing to inconsistencies and
maintenance challenges. To address these issues, we
have decided to technically overhaul the app using cross-
platform technology, aiming to improve maintainability
and eliminate inconsistencies.

3.2.1 Problems

Our initial code review and past experiences with content Problem 1:

Maintenance of two

codebases

updates and bug fixes revealed a key issue: the iOS and An-
droid apps exhibit inconsistent behavior, even with iden-
tical inputs. This fact complicates testing and introduces
unpredictable results.

24 3 Planning FLApp’s Cross-Platform Transition

The current architecture of the apps further compoundsProblem 2: Tight

coupling, lack of

uniform architecture,

and poor separation of

concern

these challenges. The iOS implementation, based on a
tightly coupled Model-View-Controller (MVC) pattern, di-
rectly loads data within view controllers, preventing data
model flexibility. In contrast, the Android app employs
the MVVM pattern but relies on a complex parser class
throughout. This parser violates the single responsibility
principle and introduces significant maintainability chal-
lenges. Both codebases suffer from tight coupling and a
lack of clear separation of concerns.

Having two native implementations presents significantProblem 3: Onboarding

new developers challenges for new developers joining the project. The out-
dated Objective-C codebase in the iOS app and inconsistent
implementations across platforms create a steep learning
curve. New developers must work on two very distinct ar-
chitectures and require adjustments for each platform.

3.2.2 High-Level Goals

To guide the selection of a cross-platform technology (CPT)High-level goals help us

select the CPT. for FLApp, we established the following high-level goals
derived from the previously identified problems. These
goals served as critical criteria during the technology eval-
uation process.

Our primary objective is to preserve all existing featuresGoal 1: No regression

regarding features and

user experience.

and the user experience without regression. The new
technology must support critical capabilities such as Aug-
mented Reality (AR) and tracking iBeacons at the stations.

We aim to eliminate code duplication between platformsGoal 2: Remove

duplication to improve

maintainability.

wherever feasible. By that, we want to ensure a single
source of truth and consistent behavior across platforms.

We want to establish a unified app architecture acrossGoal 3: Introduce a

uniform app

architecture.

both platforms to reduce cognitive load for developers
and enhance maintainability. A consistent architecture will
streamline development and ensure coherence in the code-
base, leading to a more efficient development process.

3.3 Cross-Platform Framework Selection 25

3.3 Cross-Platform Framework Selection

One of the key tasks before the actual migration of FLApp We have to choose a

suitable CPF for the

migration.

to a cross-platform technology is the choice of a suitable
development framework.

In section 2.1 and section 2.2, we already introduced four We base our decision

on previous research.cross-platform options from different categories and looked
at similar migrations. This prior work is our basis for
understanding the potential advantages and challenges of
adopting a cross-platform framework.

However, the related work reflects individual experiences We need a specific

analysis despite our

related work.

that may not directly apply to our specific application. We
take valuable insights from these studies, but they some-
times align differently with our project’s requirements and
context, making a detailed analysis for FLApp necessary.

3.3.1 Decision Frameworks

We researched important criteria to consider when select- We research important

aspects to select the

CPF.

ing a suitable CPF for FLApp. While we also had sev-
eral important criteria in mind before our research, this ap-
proach ensured we respected all the significant aspects dur-
ing our selection process.

Rieger and Majchrzak [2019] proposed a Decision Frame- Rieger proposed a

Decision Framework

with 33 criteria.

work (DF) tailored for evaluating cross-platform frame-
works on a per-project basis. This framework employs
33 criteria, organized into four key perspectives: infras-
tructure, development, app, and user (Figure A.1). Each
framework is scored on a scale from 0 (entirely dysfunc-
tional) to 5 (fully functional) across these categories. Addi-
tionally, the DF supports company- or project-specific con-
figurations through customizable weight profiles, making
it adaptable to diverse project requirements. An evalua-
tion study demonstrated its applicability by assessing five
cross-platform frameworks, offering a structured approach
for selecting the most suitable option for specific projects.

26 3 Planning FLApp’s Cross-Platform Transition

Further research on Decision Frameworks includes theLachgar and

Khachouch introduced

other Decision

Frameworks.

work of Lachgar et al. [2022], who introduced a more com-
plex DF based on multi-criteria decision-making (MCDM)
methods, and Khachouch et al. [2020], who presented nine
guiding questions for selecting a general technology ap-
proach (e.g., Native, Web, Hybrid, Cross-platform, Cloud-
based, or Merged) rather than focusing on specific frame-
works.

However, Rieger and Majchrzak [2019] also highlight chal-Rieger highlights

challenges in evaluating

frameworks due to

scientific research.

lenges in evaluating frameworks using literature and sci-
entific studies: Comparisons often involve a limited sub-
set of frameworks. Furthermore, diverse research objec-
tives can lead to inconsistent or even contradictory find-
ings. This inconsistency is evident even in seemingly objec-
tive, quantitative performance measures, complicating the
evaluation process and demanding caution in interpreting
such results.

This lack of consistent and up-to-date scientific researchNon-standardized CPF

research prevents

reliable decision

frameworks.

makes developing and maintaining objective and reliable
decision frameworks difficult. The use of various studies
with differing methodologies further compounds the prob-
lem.

In our context, we cannot use the assigned scores of RiegerRieger’s evaluation is

outdated and excludes

important CPF

candidates.

and Majchrzak [2019]. Although they scored React Native
and PWAs, their evaluation reflects the state of the tech-
nology in 2019, making some criteria potentially inaccurate
for today’s state. Their work also does not include Flutter
and Kotlin Multiplatform because these frameworks were
unpopular and unstable in 2019.

Using the DF in the intended way would require us to as-We use the DF’s criteria

for our selection

process.

sign new scores based on a systematic literature review.
However, this was not the focus of our work, so we decided
to use the Decision Framework solely to identify the key
criteria relevant to our decision regarding FLApp rather
than conducting a new detailed general scoring.

3.3 Cross-Platform Framework Selection 27

3.3.2 Criteria-Based Comparison in the Context of
FLApp

Besides our high-level goals, we have extracted aspects rel- We established goals

and criteria for selecting

a cross-platform

framework.

evant to FLApp from the decision framework Rieger and
Majchrzak [2019] and selected them for our selection pro-
cess. Table 3.3 summarizes the key criteria we extracted
from their work relevant to FLApp’s CPF choice.

Perspective Criteria

App perspective Hardware Access (A1)
Platform Functionality (A2)
Input Heterogeneity (A4)
Application Lifecycle (A6)
Robustness (A9)

Infrastructure perspective Target Platforms (I2)
Distribution Channels (I4)
Internationalisation (I6)
Long-term Feasibility (I7)

Development perspective Developer Environment (D1)
Preparation Time (D2)
UI Design (D5)
Testing (D6)
Maintainability (D9)
Extensibility (D10)
Custom Code Integration (D11)

User perspective Look and Feel (U1)
Performance (U2)

Table 3.3: We extracted all criteria from [Rieger and Ma-
jchrzak, 2019] relevant to FLApp’s framework decision.

App Perspective

In our decision-making process, we prioritized several key Hardware access and

technical functionalities

like AR and Bluetooth

were prioritized.

criteria. Hardware Access (A1) and Platform Functional-
ity (A2) play significant roles for FLApp, especially consid-
ering our need for ongoing support for Bluetooth Beacons

28 3 Planning FLApp’s Cross-Platform Transition

and Augmented Reality capabilities, which are integral to
the application’s functionality.

Application Lifecycle (A6) was important as we needed toBackground beacon

ranging and offline

support were identified

as critical requirements.

enable background ranging for beacons, ensuring smooth
operation even when the app is not in the foreground. Fur-
thermore, we need Robustness (A9), particularly for offline
support and handling situations like missing device per-
missions, such as camera access.

As the first step in our decision-making process, we wantedWe focused on meeting

technical requirements

for specific features.

to exclude technologies that could not meet our technical
requirements for the current features (Goal 1, A1, A2, and
A9).

After initial research, we quickly ruled out the use of Pro-PWAs lack Bluetooth

and AR capabilities

critical to project goals.

gressive Web Apps. PWAs cannot support Bluetooth bea-
cons with the same quality as our current implementation
(A1). Web Bluetooth Scanning required for using beacons
as geomarkers is still a draft proposal3. For FLApp, we
would also need background-ranging support, allowing
the user to receive push notifications about the near sta-
tion even when the app is not actively running (A2). Fur-
thermore, supporting augmented reality (AR) would likely
have been problematic. While the relatively new WebXR
Device API4 exists, it is still in the experimental stage and
is not consistently available across devices (A2, A4).

Maintaining these functionalities is a core objective of ourNarrowed choices to

React Native, Flutter,

and KMP.

cross-platform transition, so we were compelled to remove
Progressive Web Applications as a viable candidate. This
left us with three remaining candidates: React Native, Flut-
ter, and Kotlin Multiplatform.

3 https://webbluetoothcg.github.io/web-bluetooth/scanning
4 https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API

https://webbluetoothcg.github.io/web-bluetooth/scanning
https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API
https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API

3.3 Cross-Platform Framework Selection 29

Infrastructure Perspective

Aspects like Target Platforms (I2), Distribution Chan- All candidates have

support for our required

platforms, distribution,

and localization.

nels (I4), and Internationalisation (I6) are well-defined for
FLApp. We needed a CPF that supports iOS and Android.
The app would still be distributed via the App Store and
Google Play, and we needed to support localization in En-
glish and German. As all our remaining CPF candidates
support these criteria, we consider them irrelevant to our
decision.

Long-term feasibility (I7) is a critical factor guiding our Our framework should

be mature and

supported for a long

time.

decision. We seek a framework that remains compatible
with new operating system features, receives active main-
tenance, and ensures timely resolution of bugs and issues.
We assessed this criterion by examining the framework’s
maturity, stability, and activity, as recommended by Rieger
and Majchrzak [2019].

React Native, Flutter, and KMP are all stable release frame- React Native, Flutter,

and KMP are stable

frameworks.

works that have been actively developed for several years.
The previously discussed case studies demonstrate that all
three frameworks have proven themselves in production
environments, even for large-scale enterprises.

Kotlin Multiplatform reduces technological lock-in by KMP offers reduced

technological lock-in.leveraging Kotlin, Android’s recommended programming
language5, and compiling to native LLVM code. This de-
sign allows KMP modules to be more easily replaced with
native code in end-of-life (EOL) scenarios, offering a flexi-
bility advantage over React Native or Flutter.

This also applies to Compose Multiplatform, built on An- Compose Multiplatform

provides an easier

migration path for

Android.

droid’s declarative UI framework, Jetpack Compose. We
believe migrating from Compose Multiplatform back to Jet-
pack Compose would require relatively little effort for An-
droid. The fact that transitioning from Jetpack Compose

5 https://developer.android.com/kotlin/first

https://developer.android.com/kotlin/first
https://developer.android.com/kotlin/first
https://touchlab.co/compose-multiplatform-transition-guide
https://touchlab.co/compose-multiplatform-transition-guide

30 3 Planning FLApp’s Cross-Platform Transition

to Compose Multiplatform6 can be achieved in just a few
steps supports this7.

Development Perspective

Several aspects are important when considering the devel-Development tooling is

a critical factor. opment perspective. The Developer Environment (D1) and
tooling are critical for effective implementation and usabil-
ity.

As described earlier, Flutter and React Native provide plug-Flutter and React

Native integrate well

with popular IDEs, and

KMP mainly uses

Android Studio.

ins for integration into popular IDEs such as VS Code, Intel-
liJ, and Android Studio. They also offer developer tools for
advanced debugging needs. Kotlin Multiplatform (KMP)
development is currently primarily done in Android Stu-
dio. For all three frameworks, implementing native in-
teroperability typically requires working within platform-
specific IDEs, such as Xcode for iOS and Android Studio
for Android.

Kotlin Multiplatform has strong potential to lead in IDEJetBrains’ expertise

may give KMP an edge

in the future.

support, largely thanks to JetBrains’ significant influence
and expertise. As the creators of IntelliJ and other commer-
cial IDEs, JetBrains develops the foundation for Android
Studio and plays a central role in Kotlin’s ecosystem.

Although tools like the KMP Plugin for Android Studio areJetBrains plans

KMP-specific IDE. already available, JetBrains has announced plans to intro-
duce a KMP-specific IDE8 with integrated language sup-
port for Kotlin and Swift. This new IDE may require a paid
license for commercial use. However, we are confident that
the new IDE will not be required and that the combination
of Android Studio and Xcode will continue to be sufficient.

6 https://touchlab.co/compose-multiplatform-transition-guide
7 Unfortunately, we were unable to test the transition from Jetpack

Compose to Compose Multiplatform in FLApp, as the existing An-
droid implementation still uses the traditional View System.

8 https://blog.jetbrains.com/kotlin/2024/10/kotlin-multiplatform-
development-roadmap-for-2025/#tooling

https://touchlab.co/compose-multiplatform-transition-guide
https://touchlab.co/compose-multiplatform-transition-guide
https://blog.jetbrains.com/kotlin/2024/10/kotlin-multiplatform-development-roadmap-for-2025/#tooling

3.3 Cross-Platform Framework Selection 31

JetBrains wields considerable leverage through its involve- JetBrains leverages a

strong position in

Kotlin’s ecosystem.

ment in the Kotlin Foundation, where it collaborates with
Google in key positions on the Board9 and in the language
design process. This dual role – shaping both the language
and its tooling – allows JetBrains to create a highly inte-
grated and coherent ecosystem. For developers, this "own-
ership of the stack" may translate into significant advan-
tages in terms of integration and usability. However, this
can also cause problems regarding dependence on a single
provider.

We concluded that the Development Environment (D1) was Developer environment

is sufficient for all

candidates with slight

advantages for KMP.

sufficient for all three candidates, with slight advantages
for KMP. JetBrains’ natural involvement with IDEs will al-
low them to improve the ecosystem further in the future.

Preparation Time (D2) was also a more significant concern. Preparation time is

crucial for a project like

FLApp.

This includes factors like entry barriers, required language
skills, setup on the local machine, build tools, documen-
tation, and literature. The selected framework should be
easily adaptable for developers since also computer science
students at our chair will continue to maintain this project.

React Native primarily uses the widely adopted JavaScript JavaScript and Kotlin

are popular, but Dart is

only used for Flutter

development.

language, similar to the React web framework. This famil-
iarity allows experienced React developers to get started
with React Native quickly. While JavaScript is not type-
safe, developers can use TypeScript as an alternative.
Kotlin is also already widely used, particularly for Android
development, and shares similarities with other object-
oriented programming languages like Java and Swift. On
the other hand, Dart is a relatively lesser-known language
primarily used for Flutter development. As a result, most
developers are unlikely to have prior experience with it
(Dart is position 33, Kotlin at 23, and JS at 6 in the TIOBE
Index in 202410).

9 https://kotlinfoundation.org/structure
10 https://www.tiobe.com/tiobe-index/

https://kotlinfoundation.org/structure
https://www.tiobe.com/tiobe-index/

32 3 Planning FLApp’s Cross-Platform Transition

All candidates provide so-called doctor commands check-Doctor commands

check the correct setup

of the needed tools.

ing the local setup of all required technologies and provid-
ing help for the most common errors (flutter doctor11, react-
native doctor12, and kdoctor13). They also offer config-
urable scaffoldings that can be used to set up new projects.

Generally, deploying and testing the iOS app will alwaysDeploying to an iOS

Simulator or a real

device requires macOS.

require using macOS. However, a few cloud-based services
offer running the apps for testing purposes.

Kotlin Multiplatform currently relies primarily on Gra-KMP primarily uses

Gradle; React Native

uses NPM, and Flutter

has a CLI.

dle as its build tool. While Gradle may present a learn-
ing curve and potential drawback for non-Android de-
velopers, the configuration process is expected to become
more straightforward with the introduction of Amper14, a
Gradle-compatible build tool currently in beta. React Na-
tive uses NPM as its package manager and build tool. Flut-
ter uses its package manager pub, integrated with Dart and
custom CLI tools for building, testing, and shipping the
app.

We did not find up-to-date scientific research comparingThere is limited

research comparing

learning experiences,

but all seem adaptable

in a reasonable

timeframe.

the three frameworks regarding learning experience. How-
ever, Zhang [2024] found that they could teach Flutter to
computer science students through six-week online courses
with self-directed learning to a level where they can start
implementing apps and features on their own. We did not
find similar work for the others, but we think students and
experienced developers can learn basic React Native and
KMP in a similar timeframe.

For more advanced integrations, developers will alwaysNative integration

requires more profound

platform knowledge.

need more in-depth or broad knowledge about the devel-
opment of the target platform, as bridging into the na-
tive SDK may be needed there. This may also be a prob-
lem for KMP when not using Compose Multiplatform but

11 https://www.dhiwise.com/post/flutter-doctor-command-a-vital-
tool-for-developers

12 https://reactnative.dev/blog/2019/11/18/react-native-doctor
13 https://github.com/Kotlin/kdoctor
14 https://blog.jetbrains.com/amper/2024/11/amper-update-

november-2024

https://www.dhiwise.com/post/flutter-doctor-command-a-vital-tool-for-developers
https://reactnative.dev/blog/2019/11/18/react-native-doctor
https://reactnative.dev/blog/2019/11/18/react-native-doctor
https://github.com/Kotlin/kdoctor
https://blog.jetbrains.com/amper/2024/11/amper-update-november-2024

3.3 Cross-Platform Framework Selection 33

natively implementing the UI, as this requires knowledge
about SwiftUI/UIKit and Jetpack Compose/View System.

Regarding the UI implementation methods (D5), all frame- All frameworks have

options to manage UI

with state declaratively.

works support defining UI declaratively and follow a state-
driven approach. Nevertheless, there are generally two dif-
ferent approaches among the frameworks: React Native
and Flutter are designed to use a shared frontend, which
makes mixing and matching cross-platform interfaces with
native components more complex (see D10 and D11). Still,
building a UI with React Native is easy for developers al-
ready familiar with React, as it uses almost the same syntax.

KMP takes a different approach by making the adoption KMP makes adoption of

Compose Multiplatform

optional.

of the interface library Compose Multiplatform (CMP) en-
tirely optional and explicitly leaving developers the choice
whether they want to use a shared interface technology15.
Another advantage of CMP is that the Android implemen-
tation is based on the Android Jetpack Compose UI library.
While this does not apply to FLApp, it makes adoption for
existing native applications using Jetpack Compose much
easier. On iOS, CMP can be gradually adopted by display-
ing a Composable (Composes’ name for a view) inside of a
UIViewController.

All three frameworks provide capabilities for Testing (D6). All frameworks support

various testing

methods.

Flutter supports unit tests, widget tests, and integration
tests16. React Native supports unit tests, integration tests,
component tests, and end-to-end tests. KMP uses Kotlin
Test17 frameworks for unit testing. When using native UI,
native UI tests (iOS) and Instrumentation tests (Android)
are recommended. Compose Multiplatform UI Testing18 is
currently in experimental state. While the frameworks use
different terms for specific testing approaches, they all ful-
fill our testing needs (mostly unit tests).

15 KMPs value proposition was initially focused on sharing business
layer code. CMP went Alpha in 2021 after the first versions of KMP
were already released.

16 https://docs.flutter.dev/testing/overview
17 https://kotlinlang.org/api/core/kotlin-test
18 https://www.jetbrains.com/help/kotlin-multiplatform-

dev/compose-test.html

https://kotlinlang.org/api/core/kotlin-test
https://kotlinlang.org/api/core/kotlin-test
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-test.html
https://docs.flutter.dev/testing/overview

34 3 Planning FLApp’s Cross-Platform Transition

The long-term success of our CPF transition depends on itsMaintainability is crucial

for long-term success. Maintainability (D9), which is closely related to Long-term
Feasibility (I7). All three frameworks would offer better
maintainability after adoption than the current implemen-
tations, which is the main reason for our transition.

Extensibility (D10) and the ability to integrate custom codeExtensibility and

custom code integration

are key for our

application.

(D11) are critical for implementing features not directly
supported by cross-platform frameworks (CPFs), signifi-
cantly when leveraging third-party libraries or accessing
platform-specific functionality.

Flutter provides native integration via Platform Chan-Flutter uses Platform

Channels for native

integration with some

limitations.

nels19, enabling communication between Dart code and
platform-specific APIs. This approach supports access to
native functionality but comes with some limitations. For
example, Flutter’s documentation highlights that Platform
Views on Android offer two implementations, each with
trade-offs in terms of performance and visual fidelity20.
Additionally, Flutter’s reliance on its custom rendering
engine can make integrating native UI components more
complex.

React Native uses Native Modules21 to connect JavaScriptReact Native uses

Native Modules for

integration, affecting

performance in some

cases.

with platform-specific code, offering flexibility for integrat-
ing native functionality and third-party libraries. Its ar-
chitecture supports communication with native systems.
However, performance may be affected in cases where fre-
quent communication between the JavaScript layer and na-
tive components is required [Oliveira et al., 2023].

KMP is explicitly designed for incremental adoption andKMP is designed for

native interoperability

and incremental

adoption.

native interoperability, making it especially suited for in-
tegrating into existing native apps. Its ability to work di-
rectly with platform-specific code allows developers to re-
tain or implement native functionality without significant
overhead. This is especially good for incremental migra-
tion approaches or advanced native integration. We think
that KMP makes mixing shared and native code much eas-

19 https://docs.flutter.dev/platform-integration/platform-channels
20 https://docs.flutter.dev/platform-integration/android/platform-

views
21 https://reactnative.dev/docs/turbo-native-modules-introduction

https://reactnative.dev/docs/turbo-native-modules-introduction
https://docs.flutter.dev/platform-integration/platform-channels
https://docs.flutter.dev/platform-integration/android/platform-views
https://docs.flutter.dev/platform-integration/android/platform-views

3.3 Cross-Platform Framework Selection 35

ier due to the design philosophy of expected and actual im-
plementations being similar the interface/implementation
paradigm in object-oriented languages.

User Perspective

Lastly, the user perspective is equally important as the de- User perspective is

equally important.velopment perspective. The application’s Look and Feel
(U1) and Performance (U2) influence its overall success and
user satisfaction.

We discussed parts of Look and Feel (U1) already during UI All UI frameworks can

implement the

necessary interface.

Design (D5) and are confident all (UI) frameworks could be
used to implement our current required user interface.

Perceived performance (U2) is also critical from the user’s There is a slight

performance overhead

for React Native and

Flutter.

perspective. Oliveira et al. [2023] built multiple bench-
marks in Flutter, React Native, Ionic, and as a native An-
droid app and assessed their performance. Their results
show that each framework introduced an overhead, but
Flutter was the most performant for CPU-intensive tasks
due to cross-compilation while using more memory. How-
ever, other studies showed that such overhead is not always
perceivable by the user, indicating little to no degradation
of user experience [Angulo and Ferre, 2014; Axelsson and
Carlström, 2016].

Skantz [2023] evaluated the performance of KMP on iOS Skantz’s study

evaluated KMP’s

performance on iOS

and found it comparable

to native.

writing benchmarks for networking (HTTP and JSON pars-
ing), database (SQLite), and parts of the Computer Lan-
guage Benchmarks Game (CLBG). They found that using
Kotlin was sometimes even faster than the native imple-
mentation, with the drawback of higher memory and CPU
usage. Additionally, their results show correlations be-
tween the garbage collection cycles of KMP and profiling
patterns of memory consumption and CPU usage. Overall,
their research showed almost no performance degradation
on iOS and argued that KMP uses Kotlin like native An-
droid development, so no differences should be noticeable.

36 3 Planning FLApp’s Cross-Platform Transition

Performance-wise (U2), we think all candidates will beAll candidates can

provide the necessary

performance.

able to fulfill FLApp’s needs. Despite the more resource-
intensive maps and especially AR capabilities, the app only
presents information like text, images, videos, and audio.
For AR, we could always incorporate native technology –
even with React Native and Flutter.

3.3.3 The Final Decision

Overall, it would likely be possible to implement FLAppAll three frameworks

could implement FLApp

from scratch.

from scratch using any of the three technologies. Neverthe-
less, both Flutter and React Native may require either exter-
nal libraries or interoperability with native code to support
features like augmented reality and beacon capabilities.

However, we concluded that an incremental migrationIncremental migration is

more suitable than a

reimplementation.

might be a better strategy as we realized FLApp’s problems
mainly relate to the data and business layer rather than the
user interface. As stated by Deka et al. [2017], translating a
design into code can be lengthy. So we concluded an entire
reimplementation would be a big undertaking.

Likely, a reimplementation would also bring some regres-Reimplementation risks

more (unnoticed)

regressions.

sions – even if just some UI details were not implemented
like before. This seemed unacceptable because other stake-
holders were also involved with the design and in the gen-
eral project22.

While the case studies in subsection 2.2.2 revealed both theCase studies highlight

challenges in complex

incremental migrations.

advantages and disadvantages of incremental migrations,
their challenges mainly occurred in large, complex applica-
tions. These projects had hundreds of screens, unified de-
sign systems, large development teams, and ongoing fea-
ture development.

Since our app differs from these scenarios, we concludedAdvantages of

incremental migration

outweigh the problems

for FLApp.

that the advantages of an incremental, step-by-step migra-
tion outweigh the problems presented in the case stud-
ies. This approach could allow us to ensure the app re-
mains functional throughout the migration process. It is

22 https://futurelab-aachen.de/en

https://futurelab-aachen.de/en
https://futurelab-aachen.de/en

3.3 Cross-Platform Framework Selection 37

also much more efficient in terms of time and effort to not
start from scratch.

The only framework among our candidates that effectively KMP best supports

incremental migration.supports this use case is Kotlin Multiplatform. Choosing
KMP would allow us to save significant effort and avoid
potential challenges when implementing the user interface.
Additionally, it would provide the flexibility to integrate
new screens using Compose Multiplatform in the future or
gradually replace existing ones.

Following this, we developed a migration plan and im-
plemented a proof-of-concept feature to validate our ap-
proach.

39

Chapter 4

Migrating FLApp to
Kotlin Multiplatform

Based on our decision to migrate incrementally, we set the Our primary objective

during migration was to

keep the apps

shippable.

primary migration objective to maintain fully functional
implementations at all times, preserve all existing features,
and prevent any regressions. Due to the absence of Unit
and UI tests, we relied on manual testing to verify the
progress. During the migration, we then added some Unit
tests for new implementations.

The following sections detail the migration of FLApp to We cannot explain

every detail of the

migration and code.

KMP, covering our process, reasoning, and experiences. We
highlight the critical decisions and workflows, especially
those specific to KMP. Due to the scope of this migration,
we cannot discuss every nuance of the transition.

We took advice and inspiration from some case studies like We took some

inspiration from KMP

case studies.

the native-to-KMP migration at Cash App1, the experience
at Worldline2, and the introduction of KMP at 9GAG3.

We designed a multi-step migration strategy to address We planned a

multi-step migration

strategy.

FLApp’s unique requirements and implementation: To mi-
grate FLApp effectively, we designed a multi-step strategy

1 https://kotlinlang.org/lp/multiplatform/case-studies/cash-app
2 https://blog.worldline.tech/2022/01/26/kotlin_multiplatform.html
3 https://raymondctc.medium.com/adopting-kotlin-multiplatform-

mobile-kmm-on-9gag-app-dfe526d9ce04

https://kotlinlang.org/lp/multiplatform/case-studies/cash-app
https://blog.worldline.tech/2022/01/26/kotlin_multiplatform.html
https://raymondctc.medium.com/adopting-kotlin-multiplatform-mobile-kmm-on-9gag-app-dfe526d9ce04

40 4 Migrating FLApp to Kotlin Multiplatform

that addressed its unique requirements. First, we consol-
idated the iOS and Android implementations into a single
Kotlin Multiplatform (KMP) project. This also involved mi-
grating the iOS codebase from Objective-C to Swift. While
KMP would later replace some of the Swift code, our ini-
tial goal was to run both iOS and Android in Swift and
Kotlin, making it easier to abstract the shared logic. Next,
we planned to implement GPX parsing as a proof of con-
cept using KMP. This would then be followed by moving
all "non-Android" code from the Android module into a
shared module. Finally, the strategy included redesigning
the data model and app architecture to align with a new
data format and eliminate duplicated code, inconsistencies,
and tight coupling.

4.1 Setup of KMP

When starting a new KMP project, developers can use theWe manually set up

KMP for our existing

implementations.

Kotlin Multiplatform Wizard4 or use the KMP plugin5 for
Android Studio. For FLApp, we already have Android and
iOS implementations, so we created a project with the KMP
Wizard as a template for manually setting up KMP in our
existing project.

4.1.1 Repository Setup

KMP works in a wide variety of repository setups. The de-KMP works with

different repository

setups.

fault KMP template sets up the code for iOS, Android, and
possibly other platforms in one (mono) repository. How-
ever, the Android+Shared and iOS code can also be located
in different repositories or distributed even further across
different repositories (distributed KMP libraries).

4 https://kmp.jetbrains.com
5 https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform

https://kmp.jetbrains.com
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform

4.1 Setup of KMP 41

We chose a monorepo setup because FLApp is relatively A monorepo setup

reduces complexity and

streamlines the build

process for FLApp.

simple in features and complexity. A monorepository
removes management overhead and improves developer
experience. According to Jaspan et al. [2018], using a
monorepo setup also facilitates creating unified APIs and
encourages better software architecture, which is precisely
our goal. Moreover, it simplifies managing build tools like
dependency versions.

4.1.2 Module and Folder Setup

The default scaffolding uses a single shared module ap- KMP allows different

module setups.proach, where a single KMP module named shared is uti-
lized to share code between iOS and Android. However, it
is also possible to create individual KMP modules to sepa-
rate code for specific features or domains6.

A single shared module is a great starting point because it Single shared module

reduces cognitive load.reduces cognitive load and simplifies starting with KMP.
However, according to KMP’s documentation, compile
time may increase as the code in the module grows.

Utilizing multiple modules enhances modularity and scal- Using multiple modules

may improve

encapsulation but

complicate setup.

ability while promoting code encapsulation. This approach
encourages developers to consider their code structure
carefully and facilitates better visibility control. However,
it can also complicate dependency management and Gra-
dle setup.

6 https://www.jetbrains.com/help/kotlin-multiplatform-dev/
multiplatform-project-configuration.html#module-configurations

https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-project-configuration.html#module-configurations
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-project-configuration.html#module-configurations

42 4 Migrating FLApp to Kotlin Multiplatform

FLApp

androidApp

build.gradle.kts

src

iosApp

...

shared

build.gradle.kts

src

androidMain

commonMain

commonTest

iosMain

Figure 4.1: Excerpt of the Directory Structure.

UMBRELLA FRAMEWORK:
JetBrains recommends using an umbrella module to
bundle multiple shared modules for integration into
iOS. The Kotlin/Native compiler cannot de-duplicate
bundled dependencies across multiple exported Apple
Frameworks.
So, not using an umbrella module would lead to a big-
ger app size. Furthermore, it improves the resulting
artifact and eliminates inconsistencies between depen-
dency versions.

Excursus:

Umbrella Framework

To streamline the onboarding process for new developersWe moved the iOS

implementation into the

Android repository.

and adhere to standard monorepo conventions, we decided
to integrate the iOS implementation into the existing An-
droid repository. Although it is possible to configure the
folder structure manually, we followed the default direc-
tory structure (Figure 4.1) to maintain consistency and sim-
plicity across the project.

4.1.3 Build Tools: Gradle

KMP uses Gradle as the primary build tool and integratesKMP utilizes Gradle

modules on Android

and compiles

frameworks for iOS.

right into existing Android projects because it also uses
Gradle. The iOS toolchain does not share the same build

4.1 Setup of KMP 43

tools and language, so KMP uses the Kotlin/Native com-
piler to create Apple frameworks. A custom Xcode build
step is being used to integrate the Apple framework. This
step calls Gradle to generate a binary of the framework that
will be linked to the project. The other option is using a
package manager like CocoaPods or Swift Package Man-
ager, with the framework artifact hosted on a remote reg-
istry. However, this requires the framework to be compiled
separately and uploaded to the registry.

KOTLIN/NATIVE COMPILER:
The Kotlin/Native compiler is based on LLVM and en-
ables the creation of native, self-contained binaries that
run without an additional runtime or virtual machine7.

Excursus:

Kotlin/Native compiler

For that reason, both Xcode (Xcode Command Line Tools) Xcode and Android

Studio are required for

building KMP apps.

and Android Studio (Gradle) need to be installed on the
developer’s machine to develop KMP projects.

JetBrains is actively working to create a more accessible JetBrains develops

Amper build tool to

simplify and replace

Gradle in KMP.

build tool for KMP and Kotlin development called Amper8.
Amper will simplify setting up and maintaining the build
tools of a KMP app. It is designed to be used on top of
Gradle or as a standalone tool. With that design, setting up
a new module using Amper in an existing Gradle project
should be easy. However, we decided against using Amper
for FLApp as it was only in the beta phase.

Before starting the KMP migration, we migrated the Gra- We switch to use

Gradle Version

Catalogs.

dle build files using Gradle Version Catalogues. These are
recommended in KMP to ensure that each module uses the
same dependency version.

We then started the setup of the KMP module: When em- We added a new

shared module to our

Gradle project.

bedding the new shared module into the existing Gradle
setup, we had to add it into the settings.gradle.kts to
register the module in the root Gradle project (Listing B.2).

In the Gradle file of the shared module, it is neces- The Kotlin Multiplatform

Gradle plugin is applied

to the shared module.

sary to apply the Kotlin Multiplatform Gradle plugin.

8 https://github.com/JetBrains/amper

https://github.com/JetBrains/amper

44 4 Migrating FLApp to Kotlin Multiplatform

1 kotlin {

2 iosArm64() // Targeting 64-bit iOS

3 iosX64() // Simulator on Intel macs

4 iosSimulatorArm64() // Simulator on Apple Silicon macs

5 androidTarget() // Android target

6 // also available: JVM, JS, and Wasm

7 }

Figure 4.2: This configuration code is used in shared/build.gradle.kts to specify
the multiplatform targets of the Gradle module shared.

This plugin automatically adds necessary dependencies
to, e.g., the platform-specific (iOS and Android) parts of
kotlinx.coroutines needed for asynchronous code.

In the module-level build script build.gradle.kts, weWe specify target

platforms in the

module-level build

script.

specify the target platforms for which our shared module
should compile. We can specify Android, iOS, and JVM
platforms and edit their settings (Figure 4.2).

We need to define source sets for each KMP module. SourceKMP modules use

source sets to organize

source files with their

targets and

dependencies.

sets 9 are collections of source files, each with its own set of
targets, dependencies, and compiler options. Each source
set has its folder and can be configured further using the
sourceSets Gradle attribute, allowing specification of the
source set specific dependencies. Also, source sets for test-
ing can be configured, e.g., commonTest contains tests for
the commonMain source set (Listing B.3).

When compiling for a target platform, the code acrossThe compiler collects

code hierarchically from

source sets for target

platforms.

all involved source sets is collected hierarchically (see
Figure 4.3). For instance, an iOS build targeting an ac-
tual device would include code from the commonMain,
appleMain, and iosMain source sets (Figure 4.3). This hi-
erarchical approach allows for fine-grained customization
between targets, enabling the definition of specific compiler
options and especially dependencies for each source set.

9 https://kotlinlang.org/docs/multiplatform-discover-project.html#
source-sets

https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets
https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets

4.1 Setup of KMP 45

Figure 4.3: This hierarchical tree is used for building a
specific KMP module. If the iosArm64 is requested to be
built, all sources from iosArm64, ios, apple, native, and
the common source set are used to compile the module. This
graphics is adopted from the KMP documentation.

For FLApp, we use the default Android and iOS targets The compiler collects

code hierarchically from

source sets for target

platforms

(iosArm64, iosX64 and iosSimulatorArm64) to allow com-
pilation for all possible targets (Simulators and real de-
vices).

4.1.4 Build Tools: iOS Integration

Now that we have specified our compilation targets and We need to include the

shared framework in the

iOS app.

can use common code from our shared module on An-
droid, we still need to include the framework in our Xcode
project on iOS.

First, we need to set up our iOS target in Xcode to compile We use a Run Script

Phase to compile the

shared framework each

build.

our shared framework each time we build the iOS project.
Therefore, we add a Run Script Phase (Listing 4.1), which
runs a Gradle task and creates a .framework in the output
directory at shared/build/xcode-frameworks.

46 4 Migrating FLApp to Kotlin Multiplatform

1 cd "$SRCROOT/.."

2 ./gradlew :shared:embedAndSignAppleFrameworkForXcode

Listing 4.1: Run Script for the iOS Target

Lastly, we need to set up the Framework Search PathsFramework Search

Paths are configured to

locate the Shared

framework.

in FLApp’s build settings to instruct Xcode where to
search for our Shared framework. It needs to be
set to $(SRCROOT)/../shared/build/xcode-frameworks/

$(CONFIGURATION)/$(SDK_NAME) to resolve to the correct
framework. Then, in every Swift source file, we can import
our Shared framework and use the bridged classes.

4.2 Migration From Objective-C to Swift

As part of the migration plan, we then migrated the iOSWe migrated the iOS

app to Swift to improve

Kotlin interoperability

and developer

experience.

app from Objective-C to Swift, as Kotlin and Swift are more
similar languages compared to Objective-C, providing a
similar development experience [Schultes, 2021]. Further-
more, we want to ensure easier onboarding for new devel-
opers and switch to a more modern language.

In order to incrementally convert Objective-C code to Swift,A Bridging Header

imports Objective-C into

Swift during migration.

we introduced a Briding Header10, which allows importing
Objective-C code in Swift.

At first, we migrated the entry point main.m andWe migrated entry

points first, then every

class, and verified the

success manually.

AppDelegate to Swift and added all referenced Objective-C
classes to our Bridging Header. We progressed the migra-
tion class by class and manually verified the migration’s
success. We avoided creating circular dependencies be-
tween Objective-C and Swift code, as the compiler cannot
process imported source files in the bridging header using
new Swift code. Sometimes, we had to reconnect the sto-
ryboard and xib user interface files with the code. Occa-
sionally, we could also remove old code that was no longer
used. However, we did not refactor and translate the code
line by line during that step.

10 https://developer.apple.com/documentation/swift/importing-
objective-c-into-swift

https://developer.apple.com/documentation/swift/importing-objective-c-into-swift
https://developer.apple.com/documentation/swift/importing-objective-c-into-swift

4.3 Refactoring and Implementing Features With KMP 47

4.3 Refactoring and Implementing Fea-
tures With KMP

Once we had completed migrating the iOS implementation
to Swift, we could start using KMP to integrate the first
shared code. To get started, we decided to extract a small,
not too complex part of the business logic and try out KMP
for the first time.

4.3.1 Implementing a Shared GPX Parser

We decided to use GPX parsing, which displays the tour Parsing GPX served as

a proof-of-concept for a

KMP implementation.

route on the app’s map. GPX is an XML-based stan-
dard that simplifies the exchange of GPS data (waypoints,
routes, and tracks)11. In the pre-KMP version of FLApp,
two separate implementations existed for iOS and Android.
The Android version used javax.xml to iteratively extract
all found track points (trkpt) and their positions as coor-
dinates directly from the XML document. The iOS imple-
mentation used the NSXMLParser to read the GPX file into
an object structure consisting of GPX, GPXEntry, GPXLink,
GPXTrack, GPXWaypoint and later extracted the coordinates
from the data structure.

In both implementations, parsing the existing GPX route The differences in

implementation

between the platforms

can quickly lead to

problems.

worked without any problems. However, this example il-
lustrates how even simple features can be implemented
quite differently across platforms. It is easy to see that this
can quickly lead to bugs and inconsistencies. With addi-
tional requirements, such as displaying several routes or
other points, two very different implementations have to
be adapted.

For our KMP implementation, we use the KMP library We use a KMP library

for parsing the

underlying XML.

XmlUtil12 for parsing the GPX. This library is based on the
kotlinx.serialization package, similar to the Codable

protocol in Swift. All entities and relationships between
them are implemented as data classes (Kotlin equivalent

11 https://www.topografix.com/gpx.asp
12 https://github.com/pdvrieze/xmlutil

https://www.topografix.com/gpx.asp
https://github.com/pdvrieze/xmlutil

48 4 Migrating FLApp to Kotlin Multiplatform

to Swift structs) according to the GPX specifications and
are annotated with the respective XML element names via
@XmlSerialName.

In order to ensure functionality during development andAdditional unit tests

ensure expected

functionality.

in the future, we have written unit tests in the commonTest

folder using the Test-Driven-Development (TDD) ap-
proach. We used the first-party kotlin.test framework to
implement the unit tests.

The newly implemented GPXParser decodes a GPX StringWe implemented a

parser decoding a GPX

String and returning a

typed GPX entity.

and returns a typed GPX entity, which can then be used at
higher levels of abstraction. In our case, we first integrated
this parser directly into the current map on iOS and An-
droid to test its functionality, which worked without any
additional adjustments.

We deliberately implemented GPX parsing functionalityOur implementation

could also be used as

an external library in

other projects.

beyond the immediate requirement of parsing track points.
This approach allows our KMP-based GPX parser to be
quickly packaged as an external library, making it reusable
in other projects with more extensive or varied require-
ments.

To bundle this as a framework, the relevant source filesThe GPX library can be

distributed for KMP or

as an XCFramework.

could be extracted into a separate repository using the Mul-
tiplatform Library Template13 and published to a registry
like Maven Central. Additionally, with KMMBridge14, a
standalone XCFramework can be compiled, enabling seam-
less integration into native iOS projects.

4.3.2 Sharing Files and Resources

During our initial test, we loaded the GPX Strings from theThe RouteService

abstracts away loading

from disk, parsing the

GPX file and returning

coordinates.

files in native code and extracted the coordinates required
for the route separately from the returned GPX object. Now,
we continued by implementing a RouteService, which is
responsible for loading the route: The RouteService loads
the GPX file from the app bundle, parses it using the GPX

13 https://github.com/Kotlin/multiplatform-library-template
14 https://touchlab.co/kmmbridge

https://github.com/Kotlin/multiplatform-library-template
https://github.com/Kotlin/multiplatform-library-template
https://touchlab.co/kmmbridge

4.3 Refactoring and Implementing Features With KMP 49

parser, and returns the route as a list of coordinates that can
be displayed on the map.

Since we are not working with data from remote sources, Compose Multiplatform

Resources allow

sharing images, strings,

fonts, or raw files.

we need to read resources across platforms as streams or
binary files. Compose Multiplatform (CMP) Resources15 al-
low integrating resources such as images, strings, fonts, or
raw files into a shared KMP library. However, the library is
intended to be used with the multiplatform UI framework
Compose Multiplatform.

Initially, we tried using CMP Resources to read the GPX CMP Resources did not

satisfy our

requirements.

file. While it was possible to read JSON files by path using
Res.readBytes, we could not get a list of all files in a folder
using CMP Resources.

Since it was important to us to be able to read the list of files A shared FileManager

enables uniform access

of files in content bundle

across platforms.

in a specific folder, we decided to leave the content in the
respective native app bundles16. We instead implemented
a shared FileManager as a dedicated abstraction. It enables
us to load any files from the app resources via a uniform
interface using a relative path (e.g., pois/index.json) and
list the contents of a directory.

To write platform-specific implementations, we used the The expect/actual

syntax enables defining

shared interfaces in

commonMain with

platform-specific native

implementations.

expect/actual syntax. This syntax allows specifying the ex-
pected interface in the commonMain source set, similar to an
interface in the context of object-oriented languages. We
implement this behavior in the platform-specific source sets
using native APIs (e.g., Foundation’s FileManager on iOS
and Context.assets on Android).

Additionally, we wrote a PathResolver based on the same PathResolver enables

cross-platform resource

access by resolving

platform-specific paths.

principle to use relative paths across platforms to read the
resources. The PathResolver returns the platform-specific
URL or path of the file by using the resourceURL of a
Bundle on iOS and uses the Context for Android.

15 https://www.jetbrains.com/help/kotlin-multiplatform-
dev/compose-multiplatform-resources.html

16 We later implemented a command line command that copies the app
content to the correct locations to improve developer experience.

https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-resources.html

50 4 Migrating FLApp to Kotlin Multiplatform

This unified interface uses platform-specific implementa-The unified interface

ensures reliable file

loading, using

platform-specific

implementations even

in common code.

tions to reliably load files on upper layers. The platform-
specific implementation is also used to reference expected
classes in common code.

Utilizing the newly implemented FileManager, we can
now read the GPX file from the app’s resources in the
LocalRouteService, convert it into a GPX object with the
GPXParser and then return the route as a list of coordinates.

4.3.3 Architecture Considerations & Dependency
Injection

After our successful initial tests with KMP, we needed toWe identified problems

and designed a new

app architecture.

identify the current problems and design a suitable app ar-
chitecture.

Figure 4.4 shows the old architecture of FLApp’s iOS andThe old code used a

general loader on iOS

and Android.

Android implementation business layer. Both implementa-
tions use a general-purpose class for loading the content.

Figure 4.4: In the old implementations, loading the content (e.g., POIs, articles,
GPX, etc.) from disk involved a centralized loader/parser class, which the UI used
directly.

4.3 Refactoring and Implementing Features With KMP 51

Figure 4.5: We planned a layered architecture consisting of a service layer loading
and parsing the data via the FileManager. The repository layer consumes data
from the services and maps the deserialized data to decoupled UI objects. Native
UI classes like View Controllers, Activities, and View Models use these objects.
Expected classes have actual platform-specific implementations.

The iOS implementation loads plist data from disk as iOS loaded plist data as

NSDictionaries and

accessed properties via

string keys in View

Controllers.

NSDirectionary without direct parsing into data classes.
The View Controllers mainly access the properties via
string keys. Often, manual pre-processing is used in the
View Controllers to display the data correctly.

A complex and hard-to-maintain Parser class (500+ lines Android used a complex

Parser class to convert

plist data to data

classes.

of code) is used to parse the plist data on Android. It loads
POIs, GPX, articles, and beacons, sometimes using Regex
to extract or pre-process specific entities. The parser con-
verts the data into data classes used in both the data and UI
layers, causing tight coupling.

52 4 Migrating FLApp to Kotlin Multiplatform

The Single Responsibility Principle (SRP) [Martin, 2017] isThe current

implementations violate

SRP, single source of

truth, and have tight

coupling between UI

and data.

violated as the parsers load data for many places. Sup-
posedly, both platform implementations are considered as
one project in the context of cross-platform migration. In
that case, two data sources violate the single source of truth
principle [Long, 2021]. Furthermore, the UI’s direct access
to raw data brings tight coupling, which should generally
be avoided as it makes changing the data format and test-
ing difficult [Martin, 2008].

To mitigate these problems, we planned the architecture vi-We planned a layered

architecture with

services and

repositories to decouple

data and UI.

sualized in Figure 4.5. We introduce a layered approach
with services and repositories for decoupling the data and
UI layer. Each service only loads specific data and has a
single responsibility. In the repository layer, services load
the data and map it into UI objects, which are then used to
present the user interface.

Using distinct data classes for data and UI layers imple-Using separate data

classes for data and UI

layers enforces

information hiding,

allowing UI

optimization.

ments the principle of information hiding [Martin, 2017].
This architectural separation ensures that UI components
are isolated from the specifics of the data layer’s format.
It also allows independent optimization of UI-centric data
structures for optimal presentation across screens without
altering the foundational data model.

Since we are now incorporating more classes with multipleDI was adopted to

improve maintainability

and decoupling of

business logic.

levels of abstraction into the project in the business layer, it
is practical to adopt dependency injection (DI) as a design
principle.

DEPENDENCY INJECTION:
In Dependency Injection Principles, Practices, and Patterns
Seemann and van Deursen [2019] define dependency
injection as "a set of software design principles and pat-
terns enabling developing loosely coupled code."

Excursus:

Dependency Injection

In our context, DI mainly involves injecting all depen-DI helps us write more

maintainable and

loosely coupled code.

dencies that a class requires into it at the time of its cre-
ation in a uniform way. Loosely coupled code makes
implementations more maintainable [Seemann and van
Deursen, 2019]. It simplifies testing, exchanging implemen-

4.3 Refactoring and Implementing Features With KMP 53

tations, and mocking for previews (e.g., with SwiftUI or Jet-
pack Compose).

To improve the developer experience, we decided to use a We selected Koin as a

DI framework for

FLApp.

popular DI library. Koin17 supports KMP and thus allows
a standardized approach for DI on iOS and Android.

For this purpose, we added Koin modules (not to be con- Koin modules define

how to resolve and

inject dependencies.

fused with Gradle modules) to the common iOS and An-
droid source sets. Koin modules use a Domain Specific
Language (DSL) to specify how objects of a particular type
should be resolved when being "requested" (also called in-
jected) via the Koin DI framework (Listing 4.2, Listing B.6).

1 val sharedModule = module {

2 single<GpxParser>(createdAtStart = true) {

3 GpxParser()

4 }

5 single<RouteService>(createdAtStart = true) {

6 LocalRouteService(gpxParser = get())

7 }

8 }

Listing 4.2: Definition of a RouteService being resolved by
an instance of a LocalRouteService in a Koin module.

We register platform-specific instantiations for specific Platform-specific Koin

modules register

platform-specific

dependencies.

classes in the iOS and Android Koin modules. This is espe-
cially useful if platform-specific implementations need ac-
cess to other platform-specific objects. For example, many
Android-specific features (such as loading files) require the
Android Context. Koin makes managing and instantiating
different implementations based on a target platform or en-
vironment much more manageable (Listing 4.3).

17 https://insert-koin.io

https://insert-koin.io

54 4 Migrating FLApp to Kotlin Multiplatform

1 val androidModule = module {

2 single<FileManager>() {

3 return@single DefaultFileManager(

4 context = androidContext()

5)

6 }

7 }

Listing 4.3: Platform specific dependency injection using
Koin.

Koin then only needs to be initialized in the respec-Koin is initialized in

each app to use shared

and platform-specific

modules.

tive apps so that the Koin modules sharedModule and
androidModule or iosModule are used and the Android
Context is bound (Listing 4.4).

1 startKoin {

2 androidContext(this@FlappApplication)

3 androidLogger()

4 modules(sharedModule, androidModule)

5 }

Listing 4.4: Koin needs to be initialized on both platforms,
e.g., in onCreate of FlappApplication.

4.3.4 Moving to a new Data Format

Now that we have successfully built our first business logic
feature to KMP, we want to continue unifying other parts
of the business logic.

A significant challenge in the original implementations wasUsing plist files was not

practical outside of

Apple’s ecosystem.

the reliance on the property list format (.plist). The initial
version of FLApp was developed as an iOS-only project,
historically using the plist format for content storage. With
the introduction of the Android version, the plist format
had to be adopted to maintain compatibility. However, this
choice proved less than ideal, as plist files are uncommon
outside Apple’s ecosystem and lack portability across plat-
forms18.

18 https://mediawiki.gnustep.org/index.php/Property_Lists

https://mediawiki.gnustep.org/index.php/Property_Lists

4.3 Refactoring and Implementing Features With KMP 55

Recognizing this limitation, we decided to transition to a We switched to a

JSON-based format

and designed our

implementation to

support changing

formats.

JSON-based format. However, the exact specification of our
new data format was still being determined at the time of
writing. For that reason – and to allow future maintenance
– we designed our implementation with a level of abstrac-
tion. This allows for easy adaptability and seamless transi-
tions to alternative data formats if needed. We designed a
JSON-based format for testing purposes. However, we will
not go into detail here as this is not the main subject of our
work.

To achieve this level of abstraction, we have separated the We separated data

layer models from UI

layer models.

entities from the data layer and entities for the UI layer
from each other and connected them using a bidirectional
mapper. This way, the UI does not automatically have to be
adapted when the underlying data layer changes.

As a convention, we use the prefix Bundle and the post- We designed

lightweight UI entities

for each screen to

reduce complexity.

fix Ui to distinguish objects belonging to these two layers.
Additionally, our goal was to use individual Ui entities for
each screen and keep them as lightweight as possible, con-
taining only the data needed for that screen.

We have also incorporated this paradigm for our provi- The new data format

uses index files and

unique IDs to load

detailed information for

each item.

sional JSON-based data format Figure 4.6. The list of POIs
pois/index.json only contains the information required to
display the POIs on the map and the sidebar. Unlike in
the previous data format, each POI now also has a unique
ID, which is used to load the detailed information from
pois/{poiId}.json. Therefore, a detailed POI request also
returns the article teasers, information about the AR con-
tent, the audio ID, and a quote.

As we explained in subsection 4.3.3, we have added ad- We use local REST-like

services for UI data,

enabling future remote

API support.

ditional services (LocalPoiService, LocalAudioService,
LocalArticleService, and LocalBeaconService) that load
the required data for the user interface in a REST-like fash-
ion (index and show). Even though we deliver the content
entirely locally and offline in the app, it was important to
us to use a popular pattern here.

Each service uses the before implemented FileManager to Services load resources

using FileManager and

deserialize them.

load the desired resources from the disk, parses them, and

56 4 Migrating FLApp to Kotlin Multiplatform

content

articles

{articleId}.json

audio

{audioId}.json

pois

index.json

{poiId}.json

media

audio

images

videos

beacons

index.json

track.gpx

Figure 4.6: We used a more granular structure for the new
data model.

then passes them on as data classes. Bundle objects are de-
serialized using kotlinx.serialization into correspond-
ing data classes and then returned by the service (List-
ing B.7).

All services are integrated into the Koin dependency injec-All services are

registered in Koin DI. tion, allowing them to be quickly injected at the required
locations in the shared code and native targets.

We were able to enforce the Single Responsibility Princi-
ple, remove the tight coupling, and establish a single source
of truth across platforms. At some points, we also had to
change the data handling in the user interface. Especially
on iOS, we had to fix and improve the article screen to fit
the new data model.

4.3.5 Data Migration Using KMP

When working on a new JSON data format, we first man-KMP was used to

automate conversion to

new JSON data format.

ually created files to find a suitable one. However, we
were concerned it would be tedious to do it manually for
all app content. We then realized that we could also use

4.3 Refactoring and Implementing Features With KMP 57

Kotlin Multiplatform for that task. By adding an additional
platform-agnostic module to our application, we could, in
theory, use our already written shared code for the defini-
tions, map the old legacy format to the new data format,
and save it to disk on the developer’s machine.

We started implementing this idea by adding another KMP The script module

needed a JVM target to

utilize a Java parser

dependency.

module called script to our application. We aimed to use
the original Android parser to parse the old content and
then map it to the new data format. Unfortunately, the
parser used a Java-only dependency to parse the plist for-
mat. This dependency issue meant we would only support
a Java Virtual Machine (JVM) target to run the code in our
KMP script module. However, as this script module was
only meant to run on the developer’s machine, that im-
posed no significant problems.

The only problem this caused was the need to define a JVM Mocked JVM classes

were implemented to

enable compilation in

the script module.

target in our shared KMP module because our script mod-
ule requires the shared module as a dependency. We there-
fore needed to implement the expected platform-specific
implementations for the PathResolver, FileManager, and
Preferences. It is needed as Kotlin fails to compile for
a specific target if expected classes are missing an actual
implementation. We just implemented those classes with
mocked behavior for the compilation to pass, as we did not
need them in our script module.

Then, we moved all legacy Android source files needed We used Legacy

Android code in the

KMP module to convert

legacy data to the new

format.

for the original Parser to the module. After mi-
nor adjustments, we successfully used the old An-
droid parser implementation, mapped the parsed ob-
jects to the new data format, and saved them to
disk. Running ./gradlew run -q --args="convert" con-
verts the old content folder into the new format and
./gradlew run -q --args="copy" copies them to the cor-
rect locations in the target iOS and Android apps.

We used Clikt19 for building and especially parsing com- Clikt was used for

command line parsing

in the script.

mand line commands. The package supports KMP and
works with JVM, Linux, Windows, and macOS.

19 https://ajalt.github.io/clikt

https://ajalt.github.io/clikt

58 4 Migrating FLApp to Kotlin Multiplatform

In addition to transforming the original data model to theWe implemented

automated structural

assessment for

detecting differences

between languages.

new format, we also implemented the capability to find
structural differences between German and English con-
tent, enabling automated assessment of content structure
moving forward. Implementing more developer Quality
of Life (QoL) improvements like this is suitable for future
work.

59

Chapter 5

Evaluation

In the evaluation, we discuss our development experience
with KMP as a cross-platform technology for FLApp, the
effectiveness of our migration strategy, and the fulfillment
of our previous goal.

We did not conduct a user study because we continued No user study as a

performance

degradation was very

unlikely.

to use our native user interface. Therefore, users will be
unable to detect any visual differences except responsive-
ness. However, we knew from our research on KMP that
we could expect a negligible performance degradation for
the capabilities used in our app on Android and especially
iOS [Skantz, 2023].

The incremental migration was the right choice. This ap- Incremental migration

was effective; migrating

to Swift first was useful.

proach proved effective, as incremental changes allowed
for iterative testing and step-by-step reduction of inconsis-
tent and duplicated code. Also, the decision to migrate to
Swift first proved advantageous, allowing us to leverage
the similarities between Swift and Kotlin more effectively
and directly.

Furthermore, we are also convinced that keeping the native Keeping native UI was

right; CMP allows future

UI changes.

UI implementations was a good choice (Goal 1). Reimple-
menting the entire user interface in cross-platform technol-
ogy would not have been very valuable as, despite content
updates, there are currently no plans for this app to get any
new features. However, through Compose Multiplatform,

60 5 Evaluation

we still have the flexibility to incrementally replace or im-
plement new screens across multiple platforms.

We successfully achieved our goal of separation of con-Separation of concerns

and single responsibility

achieved.

cerns and single responsibility (Goal 2). We developed
reusable, maintainable, and testable components by adher-
ing to the single responsibility principle and creating well-
defined abstractions (Goal 3).

The introduction of cross-platform code in the businessCross-platform code

eliminated

inconsistencies; tests

enhanced stability.

layer eliminated inconsistencies and, therefore, yielded a
more predictable and uniform experience for users and de-
velopers. The introduction of tests further enhanced confi-
dence and stability, guiding future developers working on
the project.

We gained the flexibility to modify the underlying data for-Decoupling data from

UI provides flexibility. mat without impacting UI code by decoupling presentation
and data models. This separation ensures adaptability for
future changes to the data model.

From a developer perspective, we liked the expect/actualKMP’s expect/actual

mechanism was very

convenient for deep

integration.

mechanism, as it felt akin to writing object-oriented code
with interfaces and implementations. This approach al-
lowed us to concentrate on software architecture rather
than fighting against the framework. This level of abstrac-
tion and seamless integration of native platform implemen-
tations into common code felt unique to KMP and, in our
opinion, would have been difficult – if not impossible – to
achieve with other frameworks like React Native or Flutter.

While we do not have concrete metrics on our developerUnified implementation

solved inconsistencies

and eliminated

duplication.

productivity, the perceived speed and level of improve-
ment were high. We achieved a unified implementation
from the first line of multiplatform code, effectively resolv-
ing existing inconsistencies. Shared classes and data struc-
tures eliminated duplication, resulting in cleaner, more
maintainable, and cohesive logic. Additionally, integrating
shared modules into script-related functionalities demon-
strated the advantages of platform-independent runtime
requirements, further reinforcing the value of a shared
codebase.

61

Although we have had much prior experience with iOS, KMP provides a good

experience for native

developers.

Swift, Android, and Kotlin, we generally found the avail-
able tools to provide a good development experience. De-
spite the general understanding of the different source sets
and implementing shared and platform-specific code, we
found that native developers will feel right at home as
they have most of their default tools and do not need to
learn a substantially different language or paradigm. This
also holds for the UI framework CMP, built on top of An-
droid’s Jetpack Compose. However, this will be different
for developers with a web background, as a fair amount of
platform-specific knowledge is needed to use KMP produc-
tively. They would probably have a better start with React
Native.

When starting with Kotlin Multiplatform (KMP), we found Gradle setup was

challenging, but

JetBrains will improve

this.

setting up Gradle for Multiplatform projects in an existing
codebase challenging, particularly for developers with lim-
ited experience with the build tool. To ease the learning
curve, we recommend using the KMP project wizard as
a reference for configuration. Fortunately, JetBrains is ac-
tively addressing these challenges by developing the Am-
per build tool, which is designed to simplify Multiplatform
project setup and management.

Although we used relatively few Kotlin Multiplatform Koin dependency

injection was beneficial

but had iOS challenges.

(KMP) libraries overall – primarily because we did not
need them – one library that stood out was the Koin de-
pendency injection framework, which significantly bene-
fited our project. The primary challenge was integrat-
ing with iOS, where resolving dependencies required ad-
ditional syntactic sugar to be practical.

The reliance on Objective-C as a bridging layer for the inter- Kotlin/Swift

interoperability through

Objective-C had

challenges.

operability between Kotlin and Swift presented challenges.
Especially for developers not familiar with Objective-C’s
data structure, this is not straightforward. Managing multi-
threaded asynchronous code proved technically challeng-
ing, as the Objective-C bridge compounded differences in
thread handling between Kotlin and Swift. We hope the
announced direct Kotlin-to-Swift export will improve this
and the general interoperability.

62 5 Evaluation

Overall, we are very satisfied with Kotlin Multiplatform
(KMP) and our migration experience. All initial goals were
successfully fulfilled, effectively addressing the underlying
issues.

63

Chapter 6

Summary and Future
Work

6.1 Summary and Contributions

The main contribution of this work is the detailed descrip- We contributed a

detailed native-to-KMP

migration.

tion of a native-to-cross-platform migration of a real app
using Kotlin Multiplatform: We overviewed current re-
search, found a gap in scientific research on cross-platform
migrations and especially up-to-date comparable litera-
ture on cross-platform technologies, and presented some
case studies. Furthermore, we explained our rationale,
goals, and requirements for the cross-platform migration.
We documented our decision-making and comparison pro-
cess for selecting a suitable cross-platform framework for
FLApp. Moreover, we described our migration strategy
and technical details. Finally, we evaluated our migration
success from a developer perspective, especially KMP as a
cross-platform technology.

64 6 Summary and Future Work

6.2 Future Work

In the context of future work, we propose to focus on
three primary areas: scientific research on cross-platform
frameworks (CPFs) and migrations, further investigation of
Kotlin Multiplatform (KMP) as a technology, and the con-
tinued development of FLApp.

First, updated and comparable research on cross-platformMore up-to-date and

comparable research

on CPFs is needed.

technologies remains a significant need. Many existing
studies present outdated frameworks, and as noted by
Rieger and Majchrzak [2019], there needs to be more uni-
fied, scientifically comparable research in this area. Estab-
lishing a standardized, quantifiable foundation for evalu-
ating cross-platform frameworks through consistent test-
ing and empirical studies could support the creation of de-
cision frameworks. This research would enable more in-
formed selections of appropriate technologies. However,
it is also important to emphasize that the project’s specific
requirements should always drive the choice of technology.

Currently, when integrating Kotlin code into the iOSObjective-C bridging

and Gradle setup still

pose challenges.

ecosystem, developers can still feel the limitations of the
Objective-C bridging layer. This integration adds complex-
ity and negatively impacts developer experience, especially
regarding asynchronous code. Also, the Gradle setup can
be difficult for Gradle beginners.

JetBrains is actively addressing the well-recognized devel-JetBrains is addressing

these limitations with a

direct Swift export and

Amper.

opment challenges. As mentioned, the company is working
on a direct Kotlin-to-Swift export feature and a new KMP
build tool called Amper, which aims to streamline the de-
velopment process.

Further development of FLApp could involve expandingFurther development

could extend KMP to

the presentation layer.

the use of KMP into the presentation layer or adopting
Compose Multiplatform for parts of the user interface.
Steps like these would result in an even greater unification
of the codebase.

6.2 Future Work 65

Based on the migration module developed in this work, ex- A Compose

Multiplatform utility for

editing app content for

desktop or web could

be created.

tending it with Compose Multiplatform would also be pos-
sible. Adopting CMP could facilitate the creation of small
utilities that allow for further editing or adding content for
FLApp during development and maintenance.

67

Appendix A

Supporting Figures

This page is intentionally left blank.

68 A Supporting Figures

Perspective Criterion

App perspective Hardware Access (A1)
Platform Functionality (A2)
Connected Devices (A3)
Input Heterogeneity (A4)
Output Heterogeneity (A5)
Application Lifecycle (A6)
System Integration (A7)
Security (A8)
Robustness (A9)
Degree of Mobility (A10)

Infrastructure perspective License (I1)
Target Platforms (I2)
Development Platforms (I3)
Distribution Channels (I4)
Monetisation (I5)
Internationalisation (I6)
Long-term Feasibility (I7)

Development perspective Development Environment (D1)
Preparation Time (D2)
Scalability (D3)
Development Process Fit (D4)
UI Design (D5)
Testing (D6)
Continuous Delivery (D7)
Configuration Management (D8)
Maintainability (D9)
Extensibility (D10)
Custom Code Integration (D11)
Pace of Development (D12)

Usage perspective Look and Feel (U1)
Performance (U2)
Usage Patterns (U3)
User Authentication (U4)

Table A.1: Criteria presented by Rieger and Majchrzak [2019] in their decision
framework for selecting a suitable cross-platform framework.

69

Appendix B

Code Samples

1 // --------------- Shared source set ---------------

2
3 expect fun randomUUID(): String

4
5 // --------------- Android source set --------------

6
7 import java.util.*

8
9 actual fun randomUUID(): String = UUID.randomUUID().toString()

10
11 // --------------- iOS source set ------------------

12
13 import platform.Foundation.NSURL

14
15 actual fun randomUUID(): String = NSUUID().UUIDString()

Listing B.1: Kotlin uses the expect/acutal syntax, which is similar to interfaces and
implementations. In the shared code, we define an expected class with a number of
methods and properties. In the platform-specific source sets, we can provide actual
implementations for these declarations also using platform-specific APIs. In this
example, only a function returning a random uuid is expected. The Android and
iOS source sets use platform APIs to return a random uuid string.

70 B Code Samples

1 rootProject.name = "FLApp"

2 enableFeaturePreview("TYPESAFE_PROJECT_ACCESSORS")

3
4 pluginManagement {

5 repositories {

6 // ...

7 }

8 }

9 plugins {

10 id("org.gradle.toolchains.foojay-resolver-convention") version "

0.8.0"

11 }

12
13 dependencyResolutionManagement {

14 repositories {

15 google {

16 // ...

17 }

18 mavenCentral()

19 }

20 }

21
22 include(":shared")

23 include(":androidApp")

24
25 include(":sceneform")

26 project(":sceneform").projectDir = File("sceneformsrc/sceneform")

27
28 include(":sceneformux")

29 project(":sceneformux").projectDir = File("sceneformux/ux")

30
31 include(":script")

Listing B.2: The Gradle settings at settings.gradle.kts contain additional
registration of the shared and script module. We omit the plugin and dependency
resolution management for readability reasons.

71

1 import org.jetbrains.kotlin.gradle.ExperimentalKotlinGradlePluginApi

2 import org.jetbrains.kotlin.gradle.dsl.JvmTarget

3
4 plugins {

5 alias(libs.plugins.kotlinMultiplatform)

6 alias(libs.plugins.androidLibrary)

7 alias(libs.plugins.kotlinxSerialization)

8 alias(libs.plugins.ksp)

9 alias(libs.plugins.kmpNativeCoroutines)

10 alias(libs.plugins.jetbrainsCompose)

11 alias(libs.plugins.compose.compiler)

12 }

13
14 kotlin {

15 androidTarget {

16 @OptIn(ExperimentalKotlinGradlePluginApi::class)

17 compilerOptions {

18 jvmTarget.set(JvmTarget.JVM_11)

19 }

20 }

21
22 listOf(

23 iosX64(),

24 iosArm64(),

25 iosSimulatorArm64()

26).forEach {

27 it.binaries.framework {

28 baseName = "Shared"

29 isStatic = true

30 }

31 }

32
33 jvm()

34
35 sourceSets {

36 androidMain.dependencies {

37 implementation(libs.androidx.preference.ktx)

38 implementation(libs.koin.android)

39 }

40 iosMain.dependencies {

41 // No other dependencies

42 }

43 commonMain.dependencies {

72 B Code Samples

44
45 // Compose Multiplatform

46 implementation(compose.runtime)

47 implementation(compose.foundation)

48 implementation(compose.material)

49 implementation(compose.ui)

50 implementation(compose.components.resources)

51 implementation(compose.components.uiToolingPreview)

52 implementation(libs.androidx.lifecycle.viewmodel)

53 implementation(libs.androidx.lifecycle.viewmodel.compose)

54 implementation(libs.androidx.lifecycle.runtime.compose)

55 implementation(libs.kermit)

56
57 // Koin

58 implementation(project.dependencies.platform(libs.koin.bom)

)

59 implementation(libs.koin.core)

60 implementation(libs.koin.compose)

61 implementation(libs.koin.compose.viewmodel)

62
63 api(libs.kmm.viewmodel)

64 implementation(libs.xmlutil.core)

65 implementation(libs.xmlutil.serialization)

66 implementation(libs.kotlinx.serialization.json)

67 implementation(libs.kotlinx.io.core)

68 implementation(libs.dd.plist)

69 implementation(compose.components.resources)

70 implementation(compose.runtime)

71 }

72
73 commonTest.dependencies {

74 implementation(kotlin("test"))

75 }

76
77 // Required by KMM-ViewModel

78 all {

79 languageSettings.optIn("kotlinx.cinterop.

ExperimentalForeignApi")

80 languageSettings.optIn("kotlin.experimental.

ExperimentalObjCName")

81 }

82 }

83 }

73

84
85 android {

86 namespace = "aachen.rwth.de.flapp.shared"

87 compileSdk = libs.versions.compileSdk.get().toInt()

88 defaultConfig {

89 minSdk = libs.versions.minSdk.get().toInt()

90 }

91 compileOptions {

92 sourceCompatibility = JavaVersion.VERSION_11

93 targetCompatibility = JavaVersion.VERSION_11

94 }

95 }

Listing B.3: The Gradle build file of the shared module at
shared/build.gradle.kts. Interesting in this context are the targets

and source sets. androidTarget, iosX64, iosArm64, iosSimulatorArm64,

and jvm define the targets of the module. In the source sets, we

specify the dependencies of the source sets and testing source sets.

74 B Code Samples

1 // --------------- Shared source set ---------------

2
3 expect class FileManager {

4
5 fun list(path: String): Array<String>

6
7 fun load(path: String): String

8
9 }

10
11 // --------------- Android source set --------------

12
13 package aachen.rwth.de.flapp.shared.utils.io

14
15 import kotlinx.cinterop.BetaInteropApi

16 import platform.Foundation.NSBundle

17 import platform.Foundation.NSData

18 import platform.Foundation.NSFileManager

19 import platform.Foundation.NSString

20 import platform.Foundation.NSUTF8StringEncoding

21 import platform.Foundation.create

22 import platform.Foundation.dataUsingEncoding

23
24 @OptIn(BetaInteropApi::class)

25 fun String.data(): NSData? =

26 NSString.create(string = this).dataUsingEncoding(NSUTF8StringEncoding)

27
28 @OptIn(BetaInteropApi::class)

29 fun NSData.string(): String? =

30 NSString.create(data = this, encoding = NSUTF8StringEncoding)?.toString()

31
32 actual class FileManager {

33
34 private val baseUrl = NSBundle.mainBundle.resourceURL!!

35 private val dataResourceUrl = baseUrl.URLByAppendingPathComponent("Data")!!

36 private val fileManager = NSFileManager.defaultManager

37
38 override fun load(path: String): String {

39 val data = fileManager.contentsAtPath(path) ?: throw Exception("File not

found")

40
41 data.string()?.let {

42 return it

43 } ?: throw Exception("Data could not be converted to string")

44
45 }

46
47 override fun list(path: String): Array<String> {

48 val url = dataResourceUrl.URLByAppendingPathComponent(path) ?: throw

Exception("Directory not found")

49 val contents = fileManager.contentsOfDirectoryAtPath(url.path ?: throw

Exception("Directory not found"), null) ?: throw Exception("Directory

not found")

75

50
51 return contents.map { it.toString() }.toTypedArray()

52 }

53
54 }

55
56 // --------------- iOS source set ------------------

57
58 package aachen.rwth.de.flapp.shared.utils.io

59
60 import aachen.rwth.de.flapp.shared.utils.io.FileManager

61 import android.content.Context

62 import kotlinx.serialization.json.Json

63 import java.io.IOException

64
65 actual class FileManager(context: Context) {

66
67 private val assets = context.assets

68
69 @Throws(IOException::class)

70 override fun list(path: String): Array<String> {

71 return assets.list(path) ?: emptyArray()

72 }

73
74 override fun load(path: String): String {

75 return assets.open(path).bufferedReader().use { it.readText() }

76 }

77
78 }

Listing B.4: This version of the FileManager is simplified, but contains all
neccessary functionality. The expected class specifies the interface and both actual
implementations use platform-specific APIs.

76 B Code Samples

1 package aachen.rwth.de.flapp.shared

2
3 // Omitted imports

4
5 /**

6 * Shared module that provides all shared dependencies.

7 */

8 val sharedModule = module {

9
10 // ----------- Utils -----------

11
12 single<UserInterfaceStateRepository>(createdAtStart = true) {

13 UserInterfaceStateRepository(

14 preferences = get(),

15 arUtils = get()

16)

17 }

18
19 single<Json> {

20 return@single Json {

21 ignoreUnknownKeys = true

22 explicitNulls = false

23 serializersModule = SerializersModule {

24 polymorphic(BundleContentBase::class) {

25 subclass(BundleContentText::class)

26 subclass(BundleContentImage::class)

27 subclass(BundleContentArLink::class)

28 subclass(BundleContentTitle::class)

29 subclass(BundleContentVideo::class)

30 subclass(BundleContentCredits::class)

31 subclass(BundleContentSubheading::class)

32 }

33 }

34 }

35 }

36
37 // ----------- Route -----------

38 single<GpxParser>(createdAtStart = true) {

39 GpxParser()

40 }

41 single<RouteService>(createdAtStart = true) {

42 LocalRouteService(

43 gpxParser = get(),

44 fileManager = get()

45)

46 }

47 single<RouteRepository>(createdAtStart = true) {

48 RouteRepository(

49 routeService = get()

50)

51 }

52
53 // ----------- Beacon -----------

77

54
55 single<BeaconService>(createdAtStart = true) {

56 LocalBeaconService(

57 fileManager = get(),

58 json = get()

59)

60 }

61
62 // ----------- Poi -----------

63
64 single<PoiService>(createdAtStart = true) {

65 LocalPoiService(fileManager = get(), json = get())

66 }

67 single<PoiRepository>(createdAtStart = true) {

68 return@single PoiRepository(

69 poiService = get()

70)

71 }

72
73 // ----------- Article -----------

74
75 single<ArticleService>(createdAtStart = true) {

76 LocalArticleService(fileManager = get(), json = get())

77 }

78 single<ArticleRepository> {

79 return@single ArticleRepository(

80 articleService = get()

81)

82 }

83
84 single<AudioService>(createdAtStart = true) {

85 LocalAudioService(fileManager = get(), json = get())

86 }

87
88 viewModelOf(::DebugViewModel)

89
90 }

Listing B.5: This Koin module defines the dependencies shared across the
application.

78 B Code Samples

1 package aachen.rwth.de.flapp

2
3 import aachen.rwth.de.flapp.shared.utils.io.DefaultFileManager

4 import aachen.rwth.de.flapp.shared.utils.preferences.Preferences

5 import aachen.rwth.de.flapp.shared.utils.io.FileManager

6 import org.koin.android.ext.koin.androidContext

7 import org.koin.dsl.module

8
9 val androidModule = module {

10 single<Preferences>(createdAtStart = true) {

11 Preferences(context = androidContext())

12 }

13 single<FileManager>() {

14 return@single DefaultFileManager(context = androidContext())

15 }

16 }

Listing B.6: This Koin module defines the Android-specific dependencies
registered in the application.

79

1 package aachen.rwth.de.flapp.shared.pois

2
3 import aachen.rwth.de.flapp.shared.utils.io.PathResolver

4 import aachen.rwth.de.flapp.shared.utils.io.FileManager

5 import kotlinx.io.IOException

6 import kotlinx.serialization.json.Json

7
8 class LocalPoiService(

9 private val fileManager: FileManager,

10 private val json: Json

11) {

12
13 fun getPois(): List<BundlePoi> {

14
15 val data = fileManager.load(PathResolver.resolve("pois/index.json"))

16 val index = json.decodeFromString<BundlePoisIndex>(data)

17
18 return index.data

19
20 }

21
22 fun getPoiDetail(poiId: Int): BundlePoiDetail? {

23 try {

24 val stream = fileManager.load(PathResolver.resolve("pois/${poiId}.json"))

25 return json.decodeFromString(stream)

26 } catch (e: IOException) {

27 e.printStackTrace()

28 }

29 return null

30 }

31
32 }

Listing B.7: This listing shows an example service having the single responsibility
to use the FileManager for loading the data and then parsing it into Bundle objects
that are then returned.

81

Bibliography

[1] Suyesh Amatya and Arianit Kurti. Cross-Platform Mobile Development:
Challenges and Opportunities. In Vladimir Trajkovik and Misev Anastas, ed-
itors, ICT Innovations 2013, pages 219–229, Heidelberg, 2014. Springer Interna-
tional Publishing.

[2] Esteban Angulo and Xavier Ferre. A Case Study on Cross-Platform Develop-
ment Frameworks for Mobile Applications and UX. In Proceedings of the XV
International Conference on Human Computer Interaction, Interacción ’14, New
York, NY, USA, 2014. Association for Computing Machinery. doi.org/10.

1145/2662253.2662280.

[3] Oscar Axelsson and Fredrik Carlström. Evaluation Targeting React Native in
Comparison to Native Mobile Development. Master’s thesis, Lund University,
2016. URL https://api.semanticscholar.org/CorpusID:114710275.

[4] Heiko Behrens. Cross-Platform App Development for iPhone, Android &
Co.— A Comparison. In MobileTechCon, 2010.

[5] Fu Cheng. Platform Integration, pages 441–471. Apress, Berkeley, CA, 2019.
ISBN 978-1-4842-4982-6. doi.org/10.1007/978-1-4842-4982-6_12.

[6] Yoonsik Cheon and Carlos Chavez. Converting Android Native Apps to
Flutter Cross-Platform Apps. In 2021 International Conference on Computa-
tional Science and Computational Intelligence (CSCI), pages 1898–1904, 2021.
doi.org/10.1109/CSCI54926.2021.00355.

[7] Luis Corral, Andrea Janes, and Tadas Remencius. Potential Advantages and
Disadvantages of Multiplatform Development Frameworks - A Vision on Mo-
bile Environments. Procedia Computer Science, 10:1202–1207, 2012. doi.org/

10.1016/j.procs.2012.06.173. ANT 2012 and MobiWIS 2012.

[8] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols, and
R. Kumar. Rico. Proceedings of the 30th Annual ACM Symposium on User Inter-
face Software and Technology, pages 845–854, 2017. doi.org/10.1145/3126594.
3126651.

https://doi.org/10.1145/2662253.2662280
https://doi.org/10.1145/2662253.2662280
https://api.semanticscholar.org/CorpusID:114710275
https://doi.org/10.1007/978-1-4842-4982-6_12
https://doi.org/10.1109/CSCI54926.2021.00355
https://doi.org/10.1016/j.procs.2012.06.173
https://doi.org/10.1016/j.procs.2012.06.173
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651

82 Bibliography

[9] B. Eisenman. Learning React Native: Building Native Mobile Apps with JavaScript.
O’Reilly Media, 2015. ISBN 9781491929070.

[10] Wafaa S. El-Kassas, Bassem A. Abdullah, Ahmed H. Yousef, and Ayman M.
Wahba. Taxonomy of Cross-Platform Mobile Applications Development Ap-
proaches. Ain Shams Engineering Journal, 8(2):163–190, 2017. doi.org/10.

1016/j.asej.2015.08.004.

[11] Ciera Jaspan, Matthew Jorde, Andrea Knight, Caitlin Sadowski, Edward K.
Smith, Collin Winter, and Emerson Murphy-Hill. Advantages and disadvan-
tages of a monolithic repository: a case study at google. In Proceedings of the
40th International Conference on Software Engineering: Software Engineering in
Practice, ICSE-SEIP ’18, page 225234, New York, NY, USA, 2018. Association
for Computing Machinery. doi.org/10.1145/3183519.3183550.

[12] Mohamed Karim Khachouch, Ayoub Korchi, Younes Lakhrissi, and Anis
Moumen. Framework Choice Criteria for Mobile Application Development.
In 2020 International Conference on Electrical, Communication, and Computer En-
gineering (ICECCE), pages 1–5, June 2020. doi.org/10.1109/ICECCE49384.

2020.9179434.

[13] Mohamed Lachgar, Mohamed Lachgar, Mohamed Hanine, Mohamed Ha-
nine, Hanane Benouda, Hanane Benouda, Younes Ommane, and Younes Om-
mane. Decision framework for cross-platform mobile development frame-
works using an integrated multi-criteria decision-making methodology. In-
ternational Journal of Mobile Computing and Multimedia Communications, 2022.
doi.org/10.4018/ijmcmc.297928.

[14] Tom Long. Good Code, Bad Code: Think like a software engineer. Manning, 2021.

[15] Tim A. Majchrzak, Tim A. Majchrzak, Andreas Biørn-Hansen, Andreas Biørn-
Hansen, Tor Morten Grønli, and Tor-Morten Grønli. Progressive Web Apps:
the Definite Approach to Cross-Platform Development? Hawaii International
Conference on System Sciences, 2018. doi.org/10.24251/hicss.2018.718.

[16] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pren-
tice Hall PTR, USA, 1 edition, 2008. ISBN 0132350882.

[17] Robert C. Martin. Clean Architecture: A Craftsman’s Guide to Software Structure
and Design. Prentice Hall Press, USA, 1st edition, 2017. ISBN 0134494164.

[18] Piotr Nawrocki, Krzysztof Wrona, Mateusz Marczak, and Bartlomiej Sniezyn-
ski. A Comparison of Native and Cross-Platform Frameworks for Mobile Ap-
plications. Computer, 54(3):18–27, 2021. doi.org/10.1109/MC.2020.2983893.

[19] Robin Nunkesser. Beyond web/native/hybrid: a new taxonomy for mobile
app development. In Proceedings of the 5th International Conference on Mobile

https://doi.org/10.1016/j.asej.2015.08.004
https://doi.org/10.1016/j.asej.2015.08.004
https://doi.org/10.1145/3183519.3183550
https://doi.org/10.1109/ICECCE49384.2020.9179434
https://doi.org/10.1109/ICECCE49384.2020.9179434
https://doi.org/10.4018/ijmcmc.297928
https://doi.org/10.24251/hicss.2018.718
https://doi.org/10.1109/MC.2020.2983893

Bibliography 83

Software Engineering and Systems, MOBILESoft ’18, page 214218, New York,
NY, USA, 2018. Association for Computing Machinery. doi.org/10.1145/

3197231.3197260.

[20] Wellington Oliveira, Bernardo Moraes, Fernando Castor, and João Paulo Fer-
nandes. Analyzing the Resource Usage Overhead of Mobile App Develop-
ment Frameworks. In Proceedings of the 27th International Conference on Eval-
uation and Assessment in Software Engineering, EASE ’23, pages 152–161, New
York, NY, USA, 2023. Association for Computing Machinery. doi.org/10.

1145/3593434.3593487.

[21] Akshat Paul and Abhishek Nalwaya. Native Bridging in React Native, pages
165–186. Apress, Berkeley, CA, 2019. ISBN 978-1-4842-4454-8. doi.org/10.

1007/978-1-4842-4454-8_7.

[22] Rap Payne. Developing in Flutter, pages 9–27. Apress, Berkeley, CA, 2019. ISBN
978-1-4842-5181-2. doi.org/10.1007/978-1-4842-5181-2_2.

[23] Rap Payne. Everything Is Widgets, pages 31–46. Apress, Berkeley, CA, 2019.
ISBN 978-1-4842-5181-2. doi.org/10.1007/978-1-4842-5181-2_3.

[24] Carlos Manso Pinto and Carlos Coutinho. From Native to Cross-platform Hy-
brid Development. In 2018 International Conference on Intelligent Systems (IS),
pages 669–676, 2018. doi.org/10.1109/IS.2018.8710545.

[25] C.P Rahul Raj and Seshu Babu Tolety. A study on approaches to build cross-
platform mobile applications and criteria to select appropriate approach. In
2012 Annual IEEE India Conference (INDICON), pages 625–629, 2012. doi.org/
10.1109/INDCON.2012.6420693.

[26] Christoph Rieger and Tim A. Majchrzak. Towards the definitive evaluation
framework for cross-platform app development approaches. Journal of Systems
and Software, 153:175–199, 2019. doi.org/10.1016/j.jss.2019.04.001.

[27] Dominik Schultes. SequalsKA Bidirectional Swift-Kotlin-Transpiler. In 2021
IEEE/ACM 8th International Conference on Mobile Software Engineering and Sys-
tems (MobileSoft), pages 73–83, 2021. doi.org/10.1109/MobileSoft52590.

2021.00017.

[28] M. Seemann and S. van Deursen. Dependency Injection Principles, Practices, and
Patterns. Manning, 2019. ISBN 9781638357100.

[29] Osinachi Deborah Segun-Falade, Olajide Soji Osundare, Wagob-
era Edgar Kedi, Patrick Azuka Okeleke, Tochukwu Ignatius Ijomah,
and Oluwatosin Yetunde Abdul-Azeez. Developing crossplatform
software applications to enhance compatibility across devices and sys-
tems. Computer Science IT Research Journal, 5(8):2040–2061, 08 2024.
doi.org/10.51594/csitrj.v5i8.1491.

https://doi.org/10.1145/3197231.3197260
https://doi.org/10.1145/3197231.3197260
https://doi.org/10.1145/3593434.3593487
https://doi.org/10.1145/3593434.3593487
https://doi.org/10.1007/978-1-4842-4454-8_7
https://doi.org/10.1007/978-1-4842-4454-8_7
https://doi.org/10.1007/978-1-4842-5181-2_2
https://doi.org/10.1007/978-1-4842-5181-2_3
https://doi.org/10.1109/IS.2018.8710545
https://doi.org/10.1109/INDCON.2012.6420693
https://doi.org/10.1109/INDCON.2012.6420693
https://doi.org/10.1016/j.jss.2019.04.001
https://doi.org/10.1109/MobileSoft52590.2021.00017
https://doi.org/10.1109/MobileSoft52590.2021.00017
https://doi.org/10.51594/csitrj.v5i8.1491

84 Bibliography

[30] Anna Skantz. Performance Evaluation of Kotlin Multiplatform Mobile and
Native iOS Development in Swift. Master’s thesis, KTH Royal Institute of
Technology, July 2023.

[31] Frank Zammetti. React Native: A Gentle Introduction, pages 1–32. Apress,
Berkeley, CA, 2018. ISBN 978-1-4842-3939-1. doi.org/10.1007/978-1-4842-

3939-1_1.

[32] Liqiang Zhang. Teaching Cross-Platform Mobile Development and Cultivat-
ing Self-Directed Learners - A Six-Week Summer Online Course Experience. J.
Comput. Sci. Coll., 39(7):41–51, May 2024.

[33] Steffen Zimmermann. Migration From Native to Cross-Platform Development
of Mobile Apps - Process and Prototypical Implementation. Master’s thesis,
Cologne University of Applied Sciences, 05 2021.

https://doi.org/10.1007/978-1-4842-3939-1_1
https://doi.org/10.1007/978-1-4842-3939-1_1

85

Index

abbrv . see abbreviation

App Perspective . 27

Apple Framework . 43

augmented reality (AR) . 28

build settings . 46

build step . 43

case study . 13

CocoaPods. .43

compiler backends . 12

Composable . 33

Compose Multiplatform (CMP) . 13

Computer Language Benchmarks Game (CLBG) . 35

cost estimation . 14

cross-platform development (CPD) . 5

cross-platform framework (CPF) . 6

Cupertino (Flutter design system) . 12

Dart . 11

decision framework (DF) .25

Development Perspective . 30

ecdemic apps . 7

end-of-life (EOL) . 29

endemic apps . 7

evaluation . 59–62

86 Index

expect/actual . 13

Fleet . 13

Flutter . 11

foreign language app . 7

framework search paths. .46

Future Lab Aachen App (FLApp) . 21

future work . 64–65

Gradle . 13

hot reloading . 11

hybrid bridged app . 7

hybrid web app . 7

Impeller (graphics engine) . 11

incremental migration/adoption . 14

integrated development environment (IDE) . 11

introduction . 1–3

Jetpack Compose . 29

JSX . 10

JVM bytecode. .12

KMP setup . 40–46

Kotlin Multiplatform (KMP) . 12

LLVM . 12

Material components (Flutter design system) . 12

native app . 5

native components . 10

Native Interoperability . 13

native modules . 10

OpenAPI specication. .19

Index 87

operating system (OS). .9

pandemic apps. .7

Platform channels .12

POIs . 21

Progressive Web App (PWA) . 8

quality of life . 58

React . 17

React Native . 10

reimplementation . 14

RICE scoring. .18

run script (Xcode) . 46

service worker . 9

Skia (graphics engine) . 11

SLOC / LOC . 15

software development kit (SDK) . 5

Swift Package Manager (SPM) . 43

system language app. 7

user interface (UI) . 6

Web APIs . 9

web app . 7

web, hybrid, and native (WHN) . 6

widget (Flutter) . 11

Xcode. .13

Typeset December 18, 2024

	Abstract
	Überblick
	Acknowledgments
	Conventions
	Introduction
	Related Work
	App Development Approaches and Technologies
	Taxonomy of App Technologies
	Progressive Web Apps
	React Native
	Flutter
	Kotlin Multiplatform (KMP)

	Similar Migration Projects
	Scientific Research
	Case Studies
	Progressive Web Apps
	React Native
	Flutter
	Kotlin Multiplatform

	Planning FLApp's Cross-Platform Transition
	Overview of Features and Structure
	Motivation for the Cross-Platform Transition
	Problems
	High-Level Goals

	Cross-Platform Framework Selection
	Decision Frameworks
	Criteria-Based Comparison in the Context of FLApp
	App Perspective
	Infrastructure Perspective
	Development Perspective
	User Perspective

	The Final Decision

	Migrating FLApp to Kotlin Multiplatform
	Setup of KMP
	Repository Setup
	Module and Folder Setup
	Build Tools: Gradle
	Build Tools: iOS Integration

	Migration From Objective-C to Swift
	Refactoring and Implementing Features With KMP
	Implementing a Shared GPX Parser
	Sharing Files and Resources
	Architecture Considerations & Dependency Injection
	Moving to a new Data Format
	Data Migration Using KMP

	Evaluation
	Summary and Future Work
	Summary and Contributions
	Future Work

	Supporting Figures
	Code Samples
	Bibliography
	Index

